

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Symposium Poster Session

August 24, 2016

POSTER # TITLE AUTHORS

1	Investigating Possible Super Enhancer Sequences for Cardiac Development	Gunes Ates Akgun ¹ , Jaecheol Lee ² , Ningyi Shao ² , Joseph Wu ^{2,3} , Zhen Cheng ³ Departments of Biology ¹ , Cardiology ² , and Radiology ³ , Stanford University
2	Visualizing the Role of Cell Cycle in Epithelial Differentiation	Daniel Alber ¹ , Samantha Piekos ¹ , Sandra Melo ¹ , Jessica Torkelson ¹ , Lingjie Li ¹ , Gautam Shankar ¹ , Anthony Oro ¹ Department of Dermatology ¹ , Stanford University
3	Bounds on the Number of Loci Required for All Splits of a Species Tree to Appear in a Set of Gene Trees	Alan J. Aw ¹ , Rohan S. Mehta ² , Lawrence H. Uricchio ² , David Bryant ³ , Noah A. Rosenberg ² Departments of Mathematical & Computational Science ¹ and Biology ² , Stanford University; Department of Mathematics & Statistics ³ , University of Otago, New Zealand
4	Inferring Orientation Tuning from fMRI Data with the Forward Encoding Model Suffers from Biased Estimation	Dylan Cable ¹ , Taosheng Liu ² , Justin L. Gardner ¹ Department of Psychology ¹ , Stanford University; Department of Psychology ² , Michigan State University
5	Fluorescent Biosensors for Sugar Transport	Taylor M. Chavez ¹ , Lily S. Cheung ² , Wolf B. Frommer ^{1,2} Department of Biology ¹ , Stanford University; Department of Plant Biology ² , Carnegie Institution for Science
6	Regulation of TRPV1 and TRPV4 Membrane Trafficking	Annabel Chen ¹ , Carl Hurt ¹ , Eric Gross ¹ Department of Anesthesia ¹ , Stanford University
7	Effects of Kainic Acid and NSPC-Derived VEGF on Immature Neuron Activation	Kelly Chen ¹ , Elizabeth Kirby ¹ , Tony Wyss-Coray ¹ Department of Neurology ¹ , Stanford University
8	Mapping Connectivity and Function of the Neural Circuits Underlying Thirst	Michael Z. Chen ¹ , William E. Allen ² , Liqun Luo ³ , Karl Deisseroth ^{1,4} Departments of Bioengineering ¹ , Biology ³ , and Psychiatry & Behavioral Sciences ⁴ and Neurosciences Interdepartmental Program ² , Stanford University
9	The Role of SPARC and Its Binding Partners in Diffuse Intrinsic Pontine Glioma Invasion to the SVZ	Dominique Cooper ³ , Elizabeth Qin ^{1,2} , Michelle Monje ² Departments of Neuroscience ¹ , Neurology ² , and Biology ³ , Stanford University
10	Synergistic Effects of Maternal Immune Activation and cMet Deletion on Embryonic Neuronal Subtype Distribution	Kristina Correa ^{1,2} , Alex Lopez ^{1,2} , Aditi Narayan ^{1,2} , Brooke Babineau ^{1,2} , Theo Palmer ^{1,2} Department of Neurosurgery ¹ and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
11	Predicting Remote Pain and Opioid Use Cessation Using Early Trajectory Clustering	Eric Cramer ¹ , Sean Mackey ¹ , Ian Carroll ¹ , Jennifer Hah ¹ Department of Anesthesiology (Division of Pain Management) ¹ , Stanford University
12	Designing Reporters for Repeat Associated Non-ATG (RAN) Translation in HEK 293T	Tai Dinger ¹ , Shizuka Yamada ¹ , Aaron Gitler ¹ Department of Genetics ¹ , Stanford University

13	Biochemical Purification of Protein Complexes Associated with Mutant Nucleophosmin (NPM1)	Julia Eberhard ² , Marisa Juntilla ^{1,2} , Caitlin Roake ² , Natalie Ortiz ² , Steven Artandi ² Departments of Pathology ¹ and Hematology ² , Stanford University
14	In Vivo Characterization of Murine Inner Ear Hair Cell Progenitors	Juleh Eide ¹ , Patrick J. Atkinson ¹ , Alan G. Cheng ¹ Department of Otolaryngology – Head & Neck Surgery ¹ , Stanford University
15	Optimizing Single-Cell Activation in Epiretinal Prostheses to Restore Vision in People Blinded by Photoreceptor Diseases	Victoria H. Fan ^{1,2} , Lauren E. Grosberg ^{1,2} , E.J. Chichilnisky ^{1,2} Department of Neurosurgery ¹ and Hansen Experimental Physics Laboratory ² , Stanford University
16	Effects of Soil Chemistry on Plant Pathogen Communities	Johannah Farner ¹ , Erin R. Spear ¹ , Caroline Daws ¹ , Erin A. Mordecai ¹ Department of Biology ¹ , Stanford University
17	The Role of N17 in Huntingtin Pathogenesis	Alex Feldman ¹ , Koning Shen ¹ , Judith Frydman ¹ , Department of Biology ¹ , Stanford University
18	Mechanistic Investigation of Inflammation Regulation by Novel Protein NLRC3-like	Scott L. Fleming ¹ , Ana Meireles Sousa ¹ , William S. Talbot ¹ Department of Developmental Biology ¹ , Stanford University
19	Sterol-Dependent Membrane Dynamics Regulate Influenza Virus Binding	Isabel Goronzy ¹ , Robert Rawle ² , Peter Kasson ² , Steven Boxer ¹ Department of Chemistry ¹ , Stanford University; Department of Molecular Physiology & Biological Physics ² , University of Virginia
20	Characterizing C/D Box Small Nucleolar RNA Interactions with GTPases in Keratinocyte Differentiation	Katie Gu ¹ , Eon Rios ¹ , Paul Khavari ¹ Department of Epithelial Biology ¹ , Stanford University
21	Identification of the Molecular Partners of Toll-6 and Toll-7 in the Developing Antennal Lobe	Ricardo Guajardo ¹ , Jiefu Li ¹ , Liqun Luo ¹ Department of Biology ¹ , Stanford University
22	Engineering Screening Approaches to Validate Cancer Driver Genes	Daniel Hart ¹ , Sean de la O ¹ , Antonia Dominguez ² , Ameen Salahudeen ¹ , Stanley Qi ² , Calvin Kuo ¹ Departments of Medicine (Division of Hematology) ¹ and Bioengineering ² , Stanford University
23	Utilizing Haptic Interfaces to Understand Motor Control	Valerie Hau ¹ , Alok Subbarao ³ , Jananan Mithrakumar ² , Samir Menon ¹ , Oussama Khatib ¹ Departments of Computer Science ¹ and Electrical Engineering ² , Stanford University; Department of Biomedical Engineering ³ , San Jose State University
24	Steps Toward Huntington's Disease Therapeutics: ProBDNF Treatment and the Microfluidic Co-Culture System	Nicolas Herrera ¹ , Wei Wang ¹ , Yanmin Yang ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
25	Myb-RFP Expression and Regulation of a Polo-GFP Transgene in Larval Wing Disc Development of <i>Drosophila</i>	Kathleen Howell ^{1,2} , Joseph Lipsick ^{1,2} Departments of Pathology ¹ and Genetics ² , Stanford University
26	Replacing Blood Culture: Combined Broad-Range Microbial ID and AST Directly from Whole Blood	Annie Hu ¹ , Nadya Andini ¹ , Samuel Yang ¹ Department of Emergency Medicine ¹ , Stanford University
27	Variable Topography Antenna for Single-Element Beam-Steering	Karen Huynh ¹ , Chris Vassos ¹ , Yuji Tanabe ¹ , Ada Poon ¹ Department of Electrical Engineering ¹ , Stanford University
28	Characterization of Single-Guide RNAs in CRISPR/Cas9 Knockin Mice for Understanding Disease Phenotypes in Genome-Wide Association Studies	Anna Jaffe ¹ , Priya Rajasethupathy ¹ , Karl Deisseroth ^{1,2} Departments of Bioengineering ¹ and Psychiatry & Behavioral Sciences ² , Stanford University

2	Behavioral Assessment of Frequency	Discrimination in Mice	Zina Jawadi ¹ , Jinkyung Kim ¹ , Homer Abaya ¹ , John Oghalai ¹ Department of Otolaryngology – Head & Neck Surgery ¹ , Stanford University
3	Dynamic Functional Connectivity Us with Autism	sing Resting-State fMRI in Children	Ariana Johnson ¹ , Shaozheng Qin ² , Tiawen Chen ² , Rachel Rehert ² , Vinod Menon ^{1,2,3,4} Symbolic Systems Program ¹ , Departments of Psychiatry & Behavioral Sciences ² and Neurology & Neurological Sciences ³ , and Stanford Neurosciences Institute ⁴ , Stanford University
3	Mimicking the Human Bone Marrow System to Increase Hematopoietic St		Sharon Kam ¹ , Minyoung Youn ² , Anupama Narla ² , Joy Y. Wu ³ , Fan Yang ⁴ , Kathleen M. Sakamoto ² Departments of Biology ¹ , Pediatrics ² , Endocrinology ³ , and Bioengineering ⁴ , Stanford University
3	Identifying Microbiome Signatures of Disease in HSCT Patients	f Steroid-Refractory Graft-vs-Host	Joyce Kang ¹ , Tessa Andermann ² , Jessica Ribado ¹ , Katia Tkachenko ^{1,3} , Eli Moss ¹ , Ami Bhatt ^{1,3} Departments of Genetics ¹ and Medicine (Divisions of Infectious Diseases ² and Hematology ³), Stanford University
3	Hunting for New Therapeutic Approx Treat Huntington's Chorea	aches: Using CRISPR Systems to	Aris John Kare ¹ , Dehua Zhao ¹ , Lei Stanley Qi ^{1,2,3} Departments of Bioengineering ¹ and Chemical & Systems Biology ² and ChEM-H ³ , Stanford University
3	Selecting Otic Sensory Lineage Cells Marker and Optimizing Conditions for		Sawa Keymeuen ¹ , Byron Hartman ¹ , Stefan Heller ¹ Department of Otolarynology ¹ , Stanford University
3	Using Cell-Free RNA to Monitor BC Metastatic Leukemia	CR-ABL1 Mutations in Brain-	Lina Khoeur ¹ , Yingmei Li ¹ , Melanie Hayden- Gephart ¹ Department of Neurosurgery ¹ , Stanford University
3	Optogenetic Stimulation of iPSC-De for Spinal Cord Injury	rived Corticospinal Motor Neurons	Joseph Kirollos ¹ , James Weiman ² , Giles Plant ² Departments of Biology ¹ and Neurosurgery ² , Stanford University
3	Development of Cellular Models to A Huntingtin Protein Aggregation on C		Nira Krasnow ¹ , Airlia Thompson ¹ , Ron Kopito ¹ Department of Biology ¹ , Stanford University
3	B Lattice Systems of Vapor-Mediated	Droplets	Anna Lai ¹ , Stefan Karpitschka ² , Manu Prakash ² Departments of Mechanical Engineering ¹ and Bioengineering ² , Stanford University
3	Developing a Novel Bipolar Catheter Ventricular Tachycardia	Ablation System for Treating	Andrew Lee ¹ , Meghedi Babakhanian ² , Paul J. Wang ^{1,2} Departments of Bioengineering ¹ and Cardiovascular Medicine ² , Stanford University
4	Development of a Pipeline for Determ	mining Allele Specific Translation	Angela Li ^{1,2} , Can Cenik ¹ , Jason Reuter ¹ , Maheetha Bharadwaj ¹ , Michael Snyder ¹ Department of Genetics ¹ and Program in Biomedical Computation ² , Stanford University
4	Characterizing and Maintaining Imm Organoid Cultures	une Cell Populations within Tumor	Lillian Liao ¹ , James T. Neal ¹ , Iris Liu ¹ , Calvin Kuo ¹ Department of Medicine (Division of Hematology) ¹ , Stanford University
4	Challenges on Embryonic Brain Dev	elopment	Alexander Lopez ¹ , Kristina Correa ¹ , Aditi Narayan ¹ , Brooke Babineau ¹ , Theo Palmer ¹ Department of Neurosurgery ¹ , Stanford University
4	White Matter Correlates of Suicidal I Imaging Study	Ideation: A Diffusion Tensor	Daniel Lowet ¹ , Tiffany Ho ¹ , Sarah Ordaz ² , Ian Gotlib ¹

		D CD 1.1 1 1D 11 0
		Departments of Psychology ¹ and Psychiatry & Behavioral Sciences ² , Stanford University
44	A Novel Bioluminescence Reporter-Based Sensor for Interrogating Drug-Induced Autophagy	Eric Marceau ¹ , Ian Chen ¹ , Joseph Wu ¹ Stanford Cardiovascular Institute ¹ , Stanford University
45	Electroresponsive Polypyrrole Nanoparticles for Controlled Drug Delivery	Aidan McCarty ¹ , Devleena Samanta ¹ , Niloufar Hosseini-Nassab ¹ , Richard N. Zare ¹ Department of Chemistry ¹ , Stanford University
46	Embryonic Brain Vascular Phenotypes of Endothelial-Specific Gpr124 KO Mice Versus Reck KO Mice	Thi Nguyen ¹ , Mario Vallon ¹ , Junlei Chang ¹ , Calvin Kuo ¹ Department of Medicine (Division of Hematology) ¹ , Stanford University
47	How to Get the Girl: Quantifying Courtship Behavior in Male Cichlids Using Automated Behavior Tracking	Luladay Price ¹ , Scott Juntti ¹ , Quentin Gaudry ² , Russ Fernald ¹ Department of Biology ¹ , Stanford University; Department of Biology ² , University of Maryland
48	Age- and Brain Region-Dependent Dysregulation of Oligodendrocyte Precursor Cell Population Dynamics in a Mouse Model of Neurofibromatosis Type I	Preethi Raghavan ¹ , James Lennon ^{2,3} , Michelle Monje ^{2,3} Departments of Bioengineering ¹ and Neurology ³ and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
49	Mingling Microbes: Assessing Fungi-Bacteria Interactions in the Human Gut Microbiota	Christina Ren ¹ , Les Dethlefsen ¹ , Arati Patankar ¹ , Amy Lorber ¹ , David Relman ¹ Department of Microbiology & Immunology ¹ , Stanford University
50	Transcription Factors, COUP-TFII and Nkx2-3, Act in Concert to Modulate MAdCAM1 Expression	Walter Roper ¹ , Thanh Theresa Dihn ¹ , Nicole Salazar ¹ , Julian Pan ² , Milladur Rahman ¹ , Eugene C. Butcher ^{1,2} Laboratory of Immunology & Vascular Biology (Department of Pathology) ¹ , Stanford University; Center for Molecular Biology & Medicine ² , VA Palo Alto Health Care System
51	Mechanistic Insights into a New Gli-Dependent Cancer Therapeutic	Zach Rosenthal ¹ , Alison Ondrus ¹ , Marisa Hom ¹ , James Chen ^{1,2,3} Departments of Chemical & Systems Biology ¹ , Developmental Biology ² , and Chemistry ³ , Stanford University
52	Man's Best Model: A Genomic Comparison of Ameloblastoma in Humans and Dogs	Persiana Saffari ¹ , Boaz Arzi ² , Robert West ¹ , Frank Verstraete ² , Jonathan Pollack ¹ Department of Pathology ¹ , Stanford University; Department of Surgical & Radiological Sciences ² , University of California, Davis School of Veterinary Medicine
53	Teaching a Computer to Recognize Faces: Impact of Convolutional Neural Network Architecture and Image Variations	Megha Srivastava ¹ , Kalanit Grill-Spector ¹ Department of Psychology ¹ , Stanford University
54	In-situ Two-Photon Imaging of the Gerbil Organ of Corti	Gabriela M. Steiner ^{1,2} , Sunil Puria ^{1,2} , Anthony J. Ricci ^{1,2} Department of Otolaryngology – Head & Neck Surgery ¹ and Otobiomechanics Research Group ² , Stanford University
55	Effects of Posture on Resting-State Functional Magnetic Resonance Imaging (rsfMRI)	Grace Tam ^{1,2} , Hadi Hosseini ³ , Allan Reiss ^{3,4} Departments of Biology ¹ , Psychiatry & Behavioral Sciences ³ , and Radiology ⁴ and Center for Interdisciplinary Brain Sciences Research ² , Stanford University
56	Hello Operator: Human Neuronal Population Activity During Mathematical Cognition	Sonia Targ ¹ , Yuqing Zhu ¹ , Amy Daitch ¹ , Pedro Pinheiro-Chagas ¹ , Josef Parvizi ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University

	Τ.	Y N C I I A I A I A D I GI A I I D I I	D m 1 c D 1
5		Using Non-Canonical Amino Acids to Probe Short Hydrogen Bonds in Photoactive Yellow Protein	Ben Thomson ¹ , Steven Boxer ¹ Department of Chemistry ¹ , Stanford University
5	8 I	nvestigating Female Mate Choice in Malawi Cichlids	Paul Tran ¹ , Alina Nguyen ² , Allie Byrne ¹ , Ryan York ¹ , Russell Fernald ¹ Department of Biology ¹ , Stanford University; University of Notre Dame ²
5	u	Systematic Identification of Synaptic Ligands that Bind Astrocytic Neurexin-1	Rebecca Triplett ¹ , Justin Trotter ¹ , Zhang Bo ¹ , Shane Antony Liddelow ² , Alexandra Munch ² , Ben A. Barres ² , Tom Südhof ¹ Departments of Molecular & Cellular Physiology ¹ and Neurobiology ² , Stanford University
6	60 S	Sleep and Learning in Mouse Model of Smith Magenis Syndrome	Mashbayar Tugsbayar ¹ , Bayarsaikhan Chuluun ¹ , H. Craig Heller ¹ Department of Biology ¹ , Stanford University
6		Optimizing Dosage of Small Animal Radiotherapy Using the PXi X-Rad SmART System	Aileen Wang ¹ , Stavros Melemenidis ¹ , Edward Graves ¹ Department of Radiation Oncology ¹ , Stanford University
6		Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex to Mediate Mitochondrial Association	Felice D. Kelly ¹ , Brian M. Wei ¹ , Michelle L. Parker ² , Martin J. Boulanger ² , John C. Boothroyd ¹ Department of Microbiology & Immunology ¹ , Stanford University; Department of Biochemistry & Microbiology ² , University of Victoria
6	3 N	Neural Correlates of Suicidality in Depressed Adolescents	Eileen Williams ¹ , Natalie Colich ¹ , Ian Gotlib ¹ Department of Psychology ¹ , Stanford University
6		Dynamic Binding of Novel Transcription Factors NF45 and NF90 to PD-Promoter upon T Cell Activation	Timothy Ting-Hsuan Wu ¹ , LingFang Shi ² , Peter N. Kao ² Departments of Biology ¹ and Medicine (Division of Pulmonary & Critical Care Medicine) ² , Stanford University
6	1 7	Profiling the Transcriptional Response to Activity in the <i>Drosophila</i> Brain	David Zimmerman ¹ , Thomas Clandinin ¹ Department of Neurobiology ¹ , Stanford University
6		Determining the Role of Transcription Factor AP2a in Non-Neural Ectoderm Cell Commitment	Jennifer Parker ¹ , Jillian Pattison ¹ , Jessica Torkelson ¹ , Lingjie Li ¹ , Sandra Carlos ¹ , Samantha Piekos ¹ , Hanson Zhen ¹ , Anthony Oro ¹ Department of Dermatology ¹ , Stanford University
6	7 C	Crystal Structure of the Inhibitory Channelrhodopsin	Yoon Seok Kim ¹ , Hideaki E. Kato ² , Andre Berndt ¹ , Soo Yeun Lee ¹ , Charu Ramakrishnan ¹ , Daniel Hilger ² , Brian Kobilka ² , Karl Deisseroth ¹ Departments of Bioengineering ¹ and Molecular & Cellular Physiology ² , Stanford University
6	8 N	Not Just A Black Box: Interpretable Deep Learning for Genomics	Avanti Shrikumar ¹ , Peyton Greenside ² , Anshul Kundaje ^{1,3} Departments of Computer Science ¹ , Biomedical Data Science ² , and Genetics ³ , Stanford University
6		Co-Culture with Adipose-Derived Stem Cells and Chondrocytes Enhances Chondrogenesis in 3D Macroporous Microribbon Scaffolds	Heather Rogan ¹ , Francisco Ilagan ¹ , Fan Yang ^{1,2} Departments of Bioengineering ¹ and Orthopaedic Surgery ² , Stanford University
7	0 Г	Design of Self-Assembling Bio-Inks for Cell-based 3D Printing	Karen Dubbin ¹ , Yuki Hori ¹ , Kazuomori Lewis ² , Sarah Heilshorn ¹ Departments of Materials Science & Engineering ¹ and Chemical Engineering ² , Stanford University
7		ACC-dPAG Neurons Modulate Pain Behavior in Mice	Jasmine Dickinson ¹ , Gregory Corder ² , Chaudy Sotoudeh ² , Gregory Scherrer ² Departments of Biology ¹ and Anesthesia ² , Stanford University
7		Extracellular Matrix-Based Microribbons with Varying Biochemical Cues as 3D Stem Cell Niches for Cartilage Repair	Courtney Gegg ¹ , Xinming Tong ² , Fan Yang ^{1,2}

		Departments of Bioengineering ¹ and Orthopaedic
73	A Semi-Interpenetrating Network of Polyacrylamide and Recombinant Basement Membrane Allows Pluripotent Cell Culture in a Soft, Ligand- Rich Microenvironment	Surgery ² , Stanford University Andrew J. Price ¹ , Eva Yi-Hsuan Huang ² , Alexander R. Dunn ^{1,2} Biophysics Program ¹ and Department of Chemical Engineering ² , Stanford University
74	MOZART: High-Resolution Optical Molecular Imaging System for Medical and Biological Applications	Orly Liba ^{1,2,4,5} *, Elliott SoRelle ^{1,3,4} *, Debasish Sen ^{1,4} , Adam de la Zerda ^{1,2,3,4,5} (*equal contribution) Departments of Structural Biology ¹ and Electrical Engineering ² , Biophysics Program ³ , Molecular Imaging Program at Stanford (MIPS) ⁴ , and Stanford Bio-X ⁵ , Stanford University
75	Discovery of an Anti-malarial Inhibitor with a Novel Mechanism of Action Targeting Secondary Plastid Biogenesis	Katherine Amberg-Johnson ^{1,3} , Katrina Hong ¹ , Ellen Yeh ^{1,2,3} Departments of Biochemistry ¹ , Pathology ² , and Microbiology & Immunology ³ , Stanford University
76	Characterizing the Role of Osmotic Swelling on the Transient Response and T2 Relaxation Times of Articular Cartilage and Meniscus Fibrocartilage	Eva G. Baylon ¹ , Akshay S. Chaudhari ^{2,3} , Brian A. Hargreaves ^{3,4} , Garry G. Gold ³ , Marc E. Levenston ^{1,3} Departments of Mechanical Engineering ¹ , Bioengineering ² , Radiology ³ , and Electrical Engineering ⁴ , Stanford University
77	Engineering a Novel Enzyme for Performing Site-Specific Protein Bioconjugation	Anne Ye ¹ , Shiven Kapur ¹ , Bob Chen ¹ , Jennifer Cochran ¹ Department of Bioengineering ¹ , Stanford University
78	Virtual Evaluation of Surgical Revascularization Techniques in Coronary Artery Bypass Surgery	Abhay B. Ramachandra ^{1,2,5} , Christopher Jensen ³ , Andrew B. Goldstone ³ , Joseph Y. Woo ³ , Jack H. Boyd ³ , Andrew Kahn ⁴ , Alison Marsden ^{2,5} Departments of Mechanical & Aerospace Engineering ¹ and Medicine ⁴ , University of California, San Diego; Institute for Computational & Mathematical Engineering ⁵ and Departments of Pediatric Cardiology ² and Cardiothoracic Surgery ³ , Stanford University
79	Volumetric and Multi-View CNNs for Object Classification on 3D Data	Charles R. Qi ¹ , Hao Su ² , Matthias Nießner ² , Angela Dai ² , Mengyuan Yan ¹ , Leonidas J. Guibas ² Departments of Electrical Engineering ¹ and Computer Science ² , Stanford University
80	Using Handheld Stereo Depth Cameras to Extend Medical Imaging for Radiation Therapy Planning	Cesare Jenkins ^{1,2} , Shu-Jung Yu ¹ , Lei Xing ¹ Departments of Radiation Oncology ¹ and Mechanical Engineering ² , Stanford University
81	Convergence of Non-Coding Variant Risk Across Multiple Cancer Types Reveals Novel Drivers of Tumorigenesis	Nasa Sinnott-Armstrong ¹ , Richard Sallari ² , Christina Curtis ¹ , Michael Snyder ¹ Department of Genetics ¹ , Stanford University; Massachusetts Institute of Technology ²
82	Influence of Lysozyme and Mucin Deposition on Contact Lens Wearability	Noelle I. Rabiah ¹ , Gerald G. Fuller ¹ Department of Chemical Engineering ¹ , Stanford University
83	An 8 Minute Simultaneous Morphological and Quantitative Whole Knee Magnetic Resonance Imaging Protocol	Akshay S. Chaudhari ^{1,2} , Bragi Sveinsson ^{1,3} , Catherine J. Moran ¹ , Emily J. McWalter ⁴ , Ethan M. Johnson ³ , Tao Zhang ^{1,3} , Garry E. Gold ^{1,2} , Brian A. Hargreaves ^{1,2,3} Departments of Radiology ¹ , Bioengineering ² , and Electrical Engineering ³ , Stanford University;

		Department of Mechanical Engineering ⁴ ,
		University of Saskatchewan
84	Engineering Patterned Biofilms for Microbial Consortia	Xiaofan Jin ¹ , Ingmar Riedel-Kruse ¹ Department of Bioengineering ¹ , Stanford University
85	Homeostatic Control of Adult Organ Size through Apoptosis-Coupled Stem Cell Divisions	Jackson Liang ¹ , Shruthi Balachandra ¹ , Lucy Erin O'Brien ¹ Department of Molecular & Cellular Physiology ¹ , Stanford University
86	Selective Activation of Extracellular Transglutaminase 2 by Thioredoxin-1	Brad A. Palanski ¹ , Nicholas M. Plugis ¹ , Chaitan Khosla ^{1,2} Departments of Chemistry ¹ and Chemical Engineering ² , Stanford University
87	Lossy Compression of Projection Data from Photon Counting Detectors	Picha Shunhavanich ^{1,2} , Norbert J. Pelc ^{1,2} Departments of Bioengineering ¹ and Radiology ² , Stanford University
88	Hydroxyapatite Coated Microribbon-Based Hydrogels Induce Robust Osteogenesis and Mineralization of Mesenchymal Stem Cells in 3D	Bogdan Conrad ¹ , Xinming Tong ² , Fan Yang ^{2,3} Departments of Stem Cell Biology & Regenerative Medicine ¹ , Orthopaedic Surgery ² , and Bioengineering ³ , Stanford University
89	In Vivo Characterization of the Radial and Tangential Diffusion Patterns in Human Cerebral Cortex	Qiyuan Tian ^{1,2} , Christoph W.U. Leuze ² , Grant Yang ^{1,2} , Jonathan Polimeni ³ , Jennifer A. McNab ² Departments of Electrical Engineering ¹ and Radiology ² , Stanford University; Department of Radiology ³ , Massachusetts General Hospital
90	A Method to Measure Nanometer-Scale Interactions in Model Membranes: Atomic Recombination in NanoSIMS	Frank R. Moss III ¹ , Steven G. Boxer ¹ Department of Chemistry ¹ , Stanford University
91	Dynamic Genetic Control of Gene Expression and DNA Methylation in Human Aging	Trevor Martin ¹ , Hunter Fraser ¹ Department of Biology ¹ , Stanford University
92	The Mutational Spectrum of Drosophila melanogaster	Zoe June Assaf ^{1,2} , Dmitri A. Petrov ² Departments of Genetics ¹ and Biology ² , Stanford University
93	Glycolytic Regulation of Histone Acetylation Landscape of Muscle Stem Cells During Regeneration	Nora Yucel ^{1,2} , Ermelinda Porpiglia ^{1,2} , Thach Mai ^{1,2} , Garry Nolan ^{1,2} , Helen Blau ^{1,2} Baxter Laboratories ¹ and Department of Microbiology & Immunology ² , Stanford University
94	Cohesive and Adhesive Properties of Biofilm-Forming Bacteria	Emily Hollenbeck ¹ , Lynette Cegelski ² , Gerald G. Fuller ¹ Departments of Chemical Engineering ¹ and Chemistry ² , Stanford University
95	Single-Molecule Tracking and Super-Resolution Imaging Reveal a Diffusion Trap at the Poles of <i>Caulobacter crescentus</i>	Alex von Diezmann ¹ , Thomas H. Mann ² , Keren Lasker ² , Lucy Shapiro ² , W. E. Moerner ¹ Departments of Chemistry ¹ and Developmental Biology ² , Stanford University
96	Stochastically Varying Environments Promote Evolution of Modularity in Simulated Bacterial Metabolic Networks	Aaron Goodman ¹ Department of Biology ¹ , Stanford University
97	Regulation of Huntingtin Toxicity and Aggregation by Molecular Chaperones	Koning Shen ¹ , Ankit Baghel ¹ , Alex Feldman ¹ , Judith Frydman ¹ Department of Biology ¹ , Stanford University
98	Spinal Cord Circuits for Thermosensation and Thermal Nociception	Chen Ran ¹ , Gabriella Kamalani ¹ , Xiaoke Chen ¹ Department of Biology ¹ , Stanford University
99	Integrated, Multi-Cohort Analysis of Systemic Sclerosis Identifies Prognostic Transcriptional Signature	Shane Lofgren ^{1,2*} , Monique Hinchcliff ^{3*} , Mary Carns ³ , Tammara Wood ⁴ , Kathleen Aren ³ , Esperanza Arroyo ³ , Peggie Cheung ⁵ , Alex Kuo ⁵ , Antonia Valenzuela ⁵ , Anna Haemel ⁶ , Paul J. Wolters ⁷ , Jessica Gordon ⁸ , Robert Spiera ⁸ , Shervin Assassi ⁹ , Francesco Boin ¹⁰ , Lorinda

		Chung ^{5,11,12} , David Fiorentino ¹² , Paul J. Utz ^{1,5} , Michael Whitfield ⁴ , Purvesh Khatri ^{1,2} (*equal contribution) Institute for Immunity, Transplantation, & Infection ¹ and Departments of Medicine (Divisions of Biomedical Informatics Research ² and Rheumatology ⁵) and Dermatology ¹² , Stanford University; Department of Medicine (Division of Rheumatology) ³ , Northwestern University Feinberg School of Medicine; Geisel School of Medicine ⁴ , Dartmouth College; Departments of Dermatology ⁶ , and Medicine (Pulmonary Division ⁷ and Division of Rheumatology ¹⁰), University of California, San Francisco; Department of Rheumatology ⁸ , Hospital for Special Surgery, New York; Division of Rheumatology & Clinical Immunogenetics ⁹ , University of Texas Health Science Center at Houston; Department of Veterans Affairs ¹¹ , VA Palo Alto Health Care System
100	Direct Genomic Acquisition of CRISPR Spacers from RNA by a Natural Reverse-Transcriptase-Cas1 Fusion: Remembrance of RNA-Things Past	Sukrit Silas ^{1,2*} , Georg Mohr ^{3*} , David J. Sidote ³ , Laura M. Markham ³ , Antonio Sanchez-Amat ⁴ , Devaki Bhaya ⁵ , Alan M. Lambowitz ³ , Andrew Z. Fire ¹ (*equal contribution) Departments of Pathology ¹ and Chemical & Systems Biology ² , Stanford University; Department of Molecular Biosciences ³ , Institute for Cellular & Molecular Biology, University of Texas at Austin; Department of Genetics & Microbiology ⁴ , Universidad de Murcia, Spain; Department of Plant Biology ⁵ , Carnegie Institution for Science
101	EEG Effects Produced by Nitrous Oxide and Remifentanil; BIS vs Chaos	Caitlin M. Drover ¹ , Hendrikus J. Lemmens ¹ , M. Bruce MacIver ¹ , David R. Drover ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
102	New Anesthetic Drug Discovery: Towards a More Selective 'Propofol'	Noëlie S.J. Cayla ¹ , Beza A. Dagne ¹ , Grace Ramey ¹ , Gabriella Bertaccini ¹ , James R. Trudell ¹ , M. Frances Davies ¹ , Boris D. Heifets ¹ , Yao Lu ¹ , Yun Wu ¹ , Eric R. Gross ¹ , M. Bruce MacIver ¹ , Edward J. Bertaccini ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
103	Generation of EEG Oscillations in Neocortical Brain Slices	Beza A. Dagne ¹ , Stephen W. Evans ¹ , Noëlie S.J. Cayla ¹ , Pravin Ravishanker ¹ , M. Bruce MacIver ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
104	Proving Biodegradation of Polystyrene and Polyethylene by Mealworms (Larvae of <i>Tenebrio molitor</i>) from Various Sources	Wei-Min Wu ¹ , Shanshan Yang ¹ , Anja M. Brandon ¹ , Zhiyue Wang ¹ , Hanqing Fan ¹ , James C.A. Flanagan ² , Jun Yang ³ , Robert Waymouth ² , Craig S. Criddle ¹ Department of Civil & Environmental Engineering ¹ , and Chemistry ² , Stanford University; School of Chemistry & Environment ³ , Beihang University, China
105	Precision Glycocalyx Editing for Cancer Immune Therapy	Han Xiao ¹ , Elliot C. Woods ¹ , Carolyn R. Bertozzi ¹ Department of Chemistry ¹ , Stanford University

106	Intracellular Electrical Recording of Action Potentials Using Carbon Nanotube Electrodes	Gregory Pitner ¹ , Matthew Abramian ² , Sergio Leal ³ , John Huguenard ² , Nicholas Melosh ⁴ , HS. Philip Wong ¹ Departments of Electrical Engineering ¹ , Neurology & Neurological Sciences ² , and Materials Science & Engineering ⁴ and Neurofab Incubator ³ , Stanford Neurosciences Institute, Stanford University
107	Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery	Colin J. McKinlay ¹ , Robert M. Waymouth ¹ , Paul A. Wender ^{1,2} Departments of Chemistry ¹ and Chemical & Systems Biology ² , Stanford University
108	Synaptic Vesicles Contain Small Ribonucleic Ccids (sRNAs) Including Transfer RNA Fragments (trfRNA) and microRNAs (miRNA)	Huinan Li ^{1,2} , Cheng Wu ¹ , Rodolfo Aramayo ¹ , Matthew S. Sachs ¹ , Mark L. Harlow ¹ Department of Biology ¹ , Texas A&M University; (present address) Department of Neurosurgery ² , Stanford University
109	Smaller than Small: Probing Living Cells with Wireless Sensors	Kokab Parizi ¹ , Xiaolin Hu ¹ , Mimi Yang ¹ , Demir Akin ² , Mike McConnell ³ , Ada Poon ¹ , HS. Philip Wong ¹ Departments of Electrical Engineering ¹ and Medicine (Division of Cardiovascular Medicine) ³ and Center for Cancer Nanotechnology Excellence ² , Stanford University
110	Visualization of Small Vessel Using Coherent Flow Power Doppler (CFPD)	You Leo Li ¹ , Dongwoon Hyun ¹ , Lotfi Abou- Elkacem ² , Juergen Karl Willmann ² , Jeremy J. Dahl ² Department of Biomedical Engineering ¹ , Duke University; Department of Radiology ² , Stanford University
111	Omental Macrophages: Drivers of Ovarian Cancer Colonization	Venkatesh Krishnan ¹ , Bruce Schaar ¹ , Supreeti Tallapragada ¹ , Oliver Dorigo ¹ Department of Obstetrics & Gynecology, (Division of Gynecologic Oncology) ¹ , Stanford University
112	Screening Approach to Identify a Selective NGly1 Inhibitor	Fred Tomlin ¹ , Christian Lentz ² , Matthew Bogyo ² , Carolyn Bertozzi ¹ Departments of Chemistry ¹ and Pathology ² , Stanford University
113	In-Plane Shear Strain Induces Epithelial Reorganization	Miguel A. Garcia ^{1*} , Ehsan Sadeghipour ^{1,2*} , W. James Nelson ^{1,3} , Beth L. Pruitt ^{2,3,4} (*equal contribution) Departments of Biology ¹ , Mechanical Engineering ² , Molecular & Cellular Physiology ³ , and Bioengineering ⁴ , Stanford University
114	Probing the Individual, Temporal, and Environmental Dynamics of the Human Gut Proteome	Ellen Casavant ¹ , Les Dethlefson ² , Susan Holmes ³ , David Relman ² , Josh Elias ¹ Departments of Chemical & Systems Biology ¹ , Microbiology & Immunology ² , and Statistics ³ , Stanford University
115	Environmental DNA Metabarcoding to Identify Marine Vertebrates in Monterey Bay	Elizabeth A. Andruszkiewicz ¹ , Hilary A. Starks ² , Lauren M. Sassoubre ³ , Barbara B. Block ⁴ , Alexandria B. Boehm ¹ Department of Civil & Environmental Engineering ¹ and Center for Ocean Solutions ² , Stanford University; Department of Civil, Structural, & Environmental Engineering ³ , University at Buffalo, The State University of

		New York; Department of Biology ⁴ , Hopkins Marine Station, Stanford University
116	Peripheral Blood Gene Expression Biomarkers of Risk and Progression in Type 1 Diabetes	Becca Fuhlbrigge ^{1*} , Linda Yip ^{1*} , C. Garrison Fathman ¹ (*equal contribution) Department of Medicine (Division of Immunology and Rheumatology) ¹ , Stanford University
117	Using IL-2 Vault Conjugates for Drug Delivery to Regulatory T Cells	Anant Hari ¹ , Juliana Herrera ¹ , Max Pass ¹ , Charle Garrison Fathman ¹ Department of Medicine (Division of Immunology & Rheumatology) ¹ , Stanford University
118	Novel Theranostic Nanoparticles for Molecular Imaging and Glioblastoma Therapy	Ketan Yerneni ¹ , Suchismita Mohanty ¹ , Olga Lenkov ¹ , Heike Daldrup-Link ¹ Department of Radiology, Molecular Imaging Program at Stanford (MIPS) ¹ , Stanford Universi P. C. Dave P. Dingal ^{1,2,3} , Nathan H. Kipniss ¹ ,
119	Conversion of Extracellular Signals to Programmable Genome Manipulation via CRISPRouter	Yuchen Gao ⁴ , Lei S. Qi ^{1,2,3} Departments of Bioengineering ¹ and Chemical & Systems Biology ² , Stanford ChEM-H ³ , and Cancer Biology Graduate Program ⁴ , Stanford University
120	Application of GRIN Probes for <i>in vivo</i> Fluorescence Microscopy of Retinal Ganglion Cells	Alex Kreymerman ¹ , David Buickians ² , Howard Chen ² , Ya Gong ² , Emily Huynh ² , Jeffrey Goldberg ¹ Department of Ophthalmology ¹ , Stanford University; Department of Bioengineering ² ; University of California, San Diego
121	Cleaved Trop2 as Biomarker and Therapeutic Target for Prostate Cancer	En-Chi Hsu ¹ , Meghan A. Rice ¹ , Sharon Pitteri ¹ , Hongjuan Zhao ² , Rosalie Nolley ² , Donna Peehl ² James D. Brooks ² , Tanya Stoyanova ¹ Departments of Radiology ¹ and Urology ² , Stanford University
122	Defining Molecular Mechanisms Underlying Notch1 Activity in Metastatic Prostate Cancer	Meghan A. Rice ¹ , En-Chi Hsu ¹ , Tanya Stoyanova ¹ Department of Radiology ¹ , Stanford University
123	On Chip DNA Synthesis Using Plasmonically Activated Dielectrophoretic Trapping and Transport	Punnag Padhy ¹ , Mohammad Asif Zaman ¹ , Lambertus Hesselink ¹ Department of Electrical Engineering ¹ , Stanford University
124	Molecular and Functional Resemblance of Terminally Differentiated Cells Derived from Isogenic Human iPSCs and Somatic Cell Nuclear Transfer Derived ESCs	Ming-Tao Zhao ^{1,2,3} , Haodong Chen ^{1,2,3} , Qing Lin Ning-Yi Shao ^{1,2,3} , Nazish Sayed ^{1,2,3} , Youngkyun Kim ^{1,2,3} , Huaxiao Yang ^{1,2,3} , Tony Chour ^{1,2,3} , Hor Ma ^{5,6} , Rebecca Tippner-Hedges ^{5,6} , Shoukhrat Mitalipov ^{5,6} , Michael P. Snyder ^{4*} , Joseph C. Wu ^{1,2,3*} (*corresponding authors) Stanford Cardiovascul Institute ¹ , Departments of Medicine (Division of Cardiology) ² and Genetics ⁴ , and Institute of Ster Cell Biology & Regenerative Medicine ³ , Stanfor University; Center for Embryonic Cell & Gene Therapy ⁵ , Oregon Health & Science University, Portland, Oregon; Division of Reproductive & Developmental Sciences ⁶ , Oregon National Primate Research Center, Oregon Health &
125	Anchovies to Whales: Tracking Vertebrate Biodiversity in Monterey Bay by Metabarcoding Environmental DNA (eDNA)	Science University Collin J. Closek ^{1,2} , Hilary A. Starks ¹ , Kristine R Walz ³ , Francisco P. Chavez ^{1,3} , Alexandria A. Boehm ^{1,2}

		Center for Ocean Solutions ¹ and Department of Civil & Environmental Engineering ² , Stanford University; Monterey Bay Aquarium Research Institute ³
126	Contrasting Evolutionary and Ecological Signals in Bat-Viral Interactions	Hannah Frank ¹ , David Enard ¹ , Scott Boyd ² , Elizabeth Hadly ^{1,3,4} Departments of Biology ¹ and Pathology ² , Woods Institute for the Environment ³ , and Center for Innovation in Global Health ⁴ , Stanford University
127	Restoring Tactile Sensing with Electronic Skin	Celine Liong ¹ , Alex Chortos ² , Zhenan Bao ³ Departments of Bioengineering ¹ , Materials Science & Engineering ² , and Chemical Engineering ³ , Stanford University
128	Programmed Cell Fate Changes in Mammalian Cells Using CRISPR-Based Synthetic Transcription Factors	Marie La Russa ^{1,2} , Marcos Torres ^{2,3} , Yanxia Liu ² , Yuchen Gao ⁴ , Stanley Qi ^{2,5} Biomedical Sciences Program ¹ , University of California, San Francisco; Departments of Bioengineering ² and Chemical & Systems Biology ⁵ , Summer Undergraduate Research Fellows Program ³ , and Cancer Biology Program ⁴ , Stanford University
129	Eye Movement and Reading in Parkinson's Disease	Jennifer Li ¹ , M. Ali Shariati ² , Y. Joyce Liao ² Departments of Biology ¹ and Ophthalmology ² , Stanford University
130	Algorithms for Identifying and Avoiding Axon-Bundle Activation in Epiretinal Prostheses	Karthik Ganesan ¹ , Nandita Bhaskhar ¹ , Lauren Grosberg ^{2,4} , E.J. Chichilnisky ^{2,4} , Subhasish Mitra ^{1,3} Departments of Electrical Engineering ¹ , Neurosurgery ² , and Computer Science ³ and Hansen Experimental Physics Laboratory ⁴ , Stanford University
131	Capsule Ultrasound (CUS) Device	Farah Memon ¹ , Gerard Touma ² , Junyi Wang ² , Spyridon Baltsavias ² , Morten Fischer Rasmussen ² , Chienliu Chang ² , Eric Olcott ^{3,4} , R. Brooke Jeffrey ⁴ , Amin Arbabian ² , Butrus (Pierre) T. Khuri-Yakub ² Departments of Bioengineering ¹ , Electrical Engineering ² , and Radiology ⁴ , Stanford University; Department of Radiology ³ , VA Palo Alto Health Care System
132	Morphometric Analysis of Cells on Various Substrate Materials and Stiffnesses	Hera Nalbandian ¹ , Alice Stanton ² , Beth Pruitt ¹ Departments of Mechanical Engineering ¹ and Bioengineering ² , Stanford University
133	Induced Pluripotent Stem Cell-Derived Cardiomyocytes (iPS-CMs) Separation via Inertial Microfluidic Devices	Karina Luna ¹ , Mahdokht Masaeli ¹ , Alexandre Ribeiro ¹ , Beth L. Pruitt ^{1,2} Departments of Mechanical Engineering ¹ and Molecular & Cellular Physiology ² , Stanford University
134	Proteins and Polysaccharides: the Forms and Functions of the Bacterial Extracellular Matrix	Alex S. Antonopolis ¹ , Joseph A. H. Romaniuk ¹ , Wiriya Thongsomboon ¹ , Lynette Cegelski ¹ Department of Chemistry ¹ , Stanford University
135	Investigating the Propagation of the Mechanical Stimuli from a Micro-Cantilever to the Touch Receptor Neurons of <i>C. elegans</i> Using Fluorescence Imaging	Sheetal Ramsurrun ¹ , Adam Lee Nekimken ² , Miriam Goodman ^{3,4} , Beth Pruitt ² Vice Provost for Undergraduate Education ¹ , Departments of Mechanical Engineering ² and Molecular & Cellular Physiology ³ , and Stanford Neurosciences Institute ⁴ , Stanford University
136	Integrating Public Data Towards Ecological Insight: Magnesium Transport as a Key Trait in Plant-Fungal Symbiosis	Joe Wan ¹ , Kabir Peay ¹ Department of Biology ¹ , Stanford University