

Bio-X Interdisciplinary Initiatives Seed Grants Program Symposium Poster Session

August 26, 2015

Odd-numbered posters will be presented from 4:00-4:45pm. Even-numbered posters will be presented from 4:45-5:30pm.

POSTER #	TITLE	AUTHORS
1	Applying Bayesian Model Averaging to the Optimization of Computational Water Models	Han Altae-Tran ^{1,2,3} , Lee-Ping Wang ⁵ , Vijay Pande ⁴ Departments of Mathematics ¹ , Physics ² , Electrical Engineering ³ , and Chemistry ⁴ Stanford University; Department of Chemistry ⁵ , UC Davis
2	Investigating Diurnal Cortisol as a Biomarker for Developing Affective Disorders in Children	Cameron Backes ¹ , Lara Foland-Ross ¹ , Ian Gotlib ² , Joelle LeMoult ² , Manpreet Singh ¹ Departments of Psychiatry & Behavioral Sciences ¹ and Psychology ² , Stanford University
3	Divergent Evolution <i>in vitro</i> : Engineering Specialized Drug Sensitivity in Proteases for Cellular Engineering Applications	Ryan Badiee ¹ , Conor Jacobs ¹ , Michael Z. Lin ^{2,3} Departments of Biology ¹ , Bioengineering ² , and Pediatrics ³ , Stanford University
4	Evolution of Larger Body Size During Transitions from Terrestrial to Aquatic Habitats in Snakes (Suborder Serpentes)	Matthew Benjamin ¹ , William Gearty ² , Jonathan Payne ² Departments of Biology ¹ and Geological Sciences ² , Stanford University
5	Polymorphic Residues in NLRP1Control Toxoplasma gondii Sensing	Jordan Brzezny ¹ , Sarah Ewald ¹ , John Boothroyd ¹ Department of Microbiology & Immunology ¹ , Stanford University
6	Optimizing HR of HBB Locus Using CRISPR/Cas9 and RAAV6 in HPSCs	Joab Camarena ¹ , Daniel Dever ¹ , Ayal Hendel ¹ , Matthew Porteus ¹ Department of Pediatrics ¹ , Stanford University
7	Localization and Interactions of Photosynthetic Components in Chlamydomonas reinhardtii	Chris Chen ¹ , Luke Mackinder ² , Martin Jonikas ^{1,2} Department of Biology ¹ , Stanford University; Department of Plant Biology ² , Carnegie Institution for Science
8	CD248 Defines a Subpopulation of Pro-Angiogenic Adipose Derived Stromal Cells	Monica C. Chin ¹ , Stephanie M. Vistnes ¹ , Elizabeth R. Zielins ¹ , Elizabeth A. Brett ¹ , Charles Blackshear ¹ , Derrick C. Wan ¹ , Michael T. Longaker ^{1,2} Department of Surgery (Division of Plastic & Reconstructive Surgery) ¹ and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
9	Evaluation of Candidate Agonists for the Orexin Receptor and Implications on Cardiac Function	Brian Chu ^{1,2} , Ching Shang ^{1,2} , Marco Perez ^{1,2} , Euan Ashley ^{1,2} Center for Inherited Cardiovascular Disease ¹ and Department of Medicine (Division of Cardiovascular Medicine) ² , Stanford University
10	The Effect of Low Carb vs. Low Fat Dietary Interventions on Human Adipose Cell Size	Coraal Cohen ¹ , Erin Avery ² , Lifen Liu ¹ , Elizabeth Colbert ¹ , Samuel Cushman ³ , Christopher Gardner ² , Tracey McLaughlin ¹ Departments of Endocrinology ¹ and Stanford Prevention Research Center ² , Stanford University; NIDDK ³ , National Institutes of Health
11	Using Genetic Variant Analysis to Find Novel Transcript Isoforms in Type 2 Diabetes	Amartya Das ¹ , Brian D. Piening ¹ , Andrew M. Lipchik ¹ , Michael P. Snyder ¹ Department of Genetics ¹ , Stanford University
12	Targeting Epigenetic Repression to Induce Neural Differentiation in Medulloblastoma	Lauren Ellis ¹ , James Purzner ² , Matthew Scott ² , Yoon-Jae Cho ¹

		Departments of Neurology ¹ and Developmental $\frac{1}{2}$
		Biology ² , Stanford University Bora Erden ¹ Diogo Peixoto ^{1,2} William T
	Papersontation of Decision Formation Signals in Promotor Cortax when	Newsome ^{1,3}
13	Choice Is Reported by Eve and Hand	Department of Neurobiology ¹ and Howard
		Hughes Medical Institute ³ , Stanford University; Champalimoud Neuroscience Programme ²
		Kathryn E. Evans ¹ Talia N. Lerner ^{2,3} Karl
		Deisseroth ^{2,3,4,5}
14	Rabies-Tracing Mediated Exploration of Inputs to the Substantia Nigra	Departments of Biology ¹ , Bioengineering ² , and
		Psychiatry & Behavioral Sciences ⁴ , Howard
		Stanford University
		Tanvi Gambhir ^{1,2} , Dhivya Perumal ^{1,2} , Krista
		Ring ^{1,2} , Elissa Epel ³ , Synthia Mellon ⁴ , Owen M.
		Wolkowitz ³ , and Firdaus S. Dhabhar ^{1,2,5,6,7,8}
		Department of Psychiatry & Behavioral
15	Immunosenescence in Major Depressive Disorder	Sciences ² , Stanford Institute for Immunity,
		Transplantation, & Infection ⁵ , Stanford Cancer
		Institute ⁶ , Stanford Neurosciences Institute ⁷ , and
		Departments of Psychiatry ³ and OB/GYN &
		Reproductive Sciences ⁴ , UCSF
		Omar Garcia ¹ , Andrey Malkovskiy ¹ , Johanna
		Sweere ¹ , Gernot Kaber ¹ , John Penner ^{1,2} , José
		Stevens ^{1,2} . Paul Bollyky ¹
16	<i>Pseudomonas aeruginosa</i> Pf4 Phage Is an Inhibitor of <i>Aspergillus</i>	Department of Medicine (Division of Infectious
	jumigatus Biomin Pormation and Development	Diseases) ¹ , Stanford University; California
		Institute for Medical Research ² , San Jose;
		Washington
		Druthi Ghanta ^{1,2} , Maja Djurisic ² , Assaf Hoogi ³ ,
		Daniel L. Rubin ³ , Carla J. Shatz ²
17	Automating the Analysis of Dendritic Spine Data Sets	Departments of Computer Science ¹ , Neurophiology ² and Padiology ³ Stanford
		University
		Meghana Golla ¹ , Marjan Rafat ¹ , Megan
10	The Wound Healing Response Promotes Tumor Cell Invasion and	Albertelli ¹ , Marta Vilalta ¹ , Todd A. Aguilera ¹ ,
18	Metastasis	Amato J. Giaccia ¹ , Edward E. Graves ¹
		University
		Daniel M Gonzalez ^{1,2} , Laura Andrejka ^{1,2} , Joseph
19	Structure Function Studies of Drosophila Myb-Interacting Protein Mip40	Lipsick ^{1,2}
		Departments of Pathology ¹ and Genetics ² , Stanford University
		Isabel Goronzy ¹ , Robert Rawle ² , Peter Kasson ² .
	Membrane Linid Composition Regulating Influenza Rinding Visualized	Steven Boxer ¹
20	on the Single Virion Level	Department of Chemistry ¹ , Stanford University;
		Department of Molecular Physiology & Biological Physics ² University of Virginia
		Deeksha Goyal ¹ , Samir Menon ¹ , Oussama
21	Using Force Control to Study Motor Coordination in the Human Prain	Khatib ¹
21	congroue control to bludy motor coordination in the runnan Drain	Department of Computer Science ¹ , Stanford
		University Zane I Hellmann ¹ I Aaron Cranster ¹ Paul G
22	Homeodomain Interacting Protein Kinase 4 Positively Regulates the	Rack ¹ , Michael Eisenberg ² , and James K. Chen ¹
22	Hedgehog Signaling Pathway	Departments of Chemical & Systems Biology ¹
		and Urology ² , Stanford University
23	Investigating Behavioral Changes in Mice Following Medial Entorhinal	Ashley Henderson ¹ , Caitlin Mallory ² , Lisa Giocomo ²
25	Cortex Grid Cell Scale Expansion	Departments of Biology ¹ and Neurobiology ² .

		Stanford University
24	Restoring BDNF Delivery on the Cortical-Striatal Axis: A Therapeutic Strategy for Huntington's Disease	Nicolas Herrera ¹ , Michael T. Maloney ¹ , Yanmin Yang ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
25	DNA Melt as a Rapid Fingerprint for Broad-Range Pathogen Identification and Serotyping	Annie Hu ¹ , Nadya Andini ¹ , Samuel Yang ¹ Department of Emergency Medicine ¹ , Stanford University
26	Bioengineering of Functional Cardiac Tissues	Daniel A. Hu ¹ , Vahid Serpooshan ¹ , Sean M. Wu ^{1,2,3,4} Cardiovascular Institute ¹ , Department of Medicine (Division of Cardiovascular Medicine) ² , Institute for Stem Cell Biology & Regenerative Medicine ³ , and Child Health Research Institute ⁴ , Stanford University
27	CRISPR/Cas-Mediated Genome Editing in Neurons	Ian Hull ¹ , Louise Giam ² , Thomas Südhof ² Departments of Bioengineering ¹ and Molecular & Cellular Physiology ² , Stanford University
28	Localized Analysis of Pericyte Proliferation in Coronary Artery Maturation	Andrew Jacobs ¹ , Katharina Volz ¹ , Kristy Red- Horse ¹ Department of Biology ¹ , Stanford University
29	Examining the Function of Individual A-to-I RNA Editing Sites in Drosophila	Dionna Jacobson ¹ , Tricia Deng ¹ , Lisa Zhang ¹ , Chris Li ¹ , Carrie Yan ¹ , Nora Nguyen ¹ , Jin Billy Li ¹ Department of Genetics ¹ , Stanford University
30	The Role of Inhibition in the Coding of Cutaneous Temperature in the Spinal Cord	Gabbi Kamalani ^{1,2} , Chen Ran ^{1,2} , Xiaoke Chen ^{1,2} Department of Biology ¹ and Bio-X ² , Stanford University
31	Key Amino Acid Residues in the Ketosynthase Active Site of a Polyketide Assembly Line	Joshuah Kapilivsky ¹ , Thomas Robbins ¹ , Chaitan Khosla ^{1,2} Departments of Chemistry ¹ and Chemical Engineering ² , Stanford University
32	Computational Analysis of Social Behavior in a Fish (Astatotilapia burtoni)	Katrina Kent ¹ , Austin Hilliard ¹ , Scott Juntti ¹ , Rosa Alcazar ¹ , Russell Fernald ¹ Department of Biology ¹ , Stanford University
33	Toward Understanding the Functional Relevance of Nemitin's Post- Translational Modifications in Neurons	Habib Khoury ¹ , Ivan Millan ¹ , Yanmin Yang ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
34	Targeted Delivery of siRNA Using Knottin-Protein Conjugates for Atherosclerosis and Abdominal Aortic Aneurysms	Camila R. Kofman ¹ , Sandra M. DePorter ¹ , Sungwon Lim ¹ , Jennifer R. Cochran ¹ Department of Bioengineering ¹ , Stanford University
35	Mapping Changes in Proteome Stability in Response to Acute Protein Misfolding Events	Nira Krasnow ¹ , Airlia Thompson ¹ , Ron Kopito ¹ Department of Biology ¹ , Stanford University
36	Assessing the Role of Neurosteroids in the Pathophysiology and Treatment of Autism Spectrum Disorder	Lauren Kwa ¹ , Wenchao Sun ² , Robin Libove ¹ , Jennifer Phillips ¹ , Francois Haddad ³ , Serena Tanaka ¹ , Antonio Hardan ¹ , Lawrence K. Fung ¹ Departments of Psychiatry & Behavioral Sciences ¹ and Medicine (Division of Cardiovascular Medicine) ³ and Biomaterials & Advanced Drug Delivery Lab ² , Stanford University
37	Improving Computational Performance for Real-Time Forward Dynamics Musculoskeletal Simulations	Thomas Lau ¹ , Christopher Dembia ¹ , Michael Sherman ¹ , Ajay Seth ¹ , Scott Delp ¹ Department of Bioengineering ¹ , Stanford University
38	Injectable, Long-Term Two Component Hydrogels for Spinal Cord Regeneration	Kaz Lewis ¹ , Karen Dubbin ¹ , Lei Cai ¹ , Laura Marquardt ¹ , Vanessa Doulames ² , Giles Plant ² , Sarah Heilshorn ¹ Departments of Materials Science & Engineering ¹ and Neurosurgery ² , Stanford University

	39	The Role of AUTS18 Deregulation in Synaptic Dysfunction of Human Excitatory Neurons	Jason Li ^{1,2} , Bahareh Haddad ^{1,2} , Marius Wernig ^{1,2} Institute for Stem Cell Biology & Regenerative Medicine ¹ and Department of Pathology ² , Stanford University
	40	Miniaturized Inductive RFID tags for Cellular Level Sensing	Xiaolin Hu ¹ , Wendy Li ¹ , Mimi Yang ¹ , H.S. Philip Wong ¹ Department of Electrical Engineering ¹ , Stanford University
	41	Investigating the Regulation of NGFR in Human Triple Negative Breast Cancer Cells	Lillian Liao ¹ , Meghah Vuppalapaty ¹ , Angera Kuo ¹ , Michael Clarke ¹ Institute for Stem Cell Biology & Regenerative Medicine ¹ , Stanford University
	42	The Role of MicroRNA-126 in Tumor Angiogenesis	Cynthia Kosinski ¹ , Terry Reyes ¹ , Majed Magzoub ² , George Chen ³ , Junlei Chang ¹ , Frank Kuhnert ¹ , Calvin J. Kuo ¹ Departments of Medicine ¹ , Bioengineering ² , and Biology ³ , Stanford University
	43	Cell Intrinsic and Microenvironmental Etiologies of Chemotherapy- Induced White Matter Damage	Alfonso Ocampo ^{1,2,3,4,6} , Erin M. Gibson ^{1,2,3,6} , Lauren S. Wood ^{1,2,3,4} , James Lennon ^{1,2,3,4} , Surya Nagaraja ^{1,2,3,4,5} , Pam J. Woo ^{1,2,3,4} , Hannes Vogel ^{1,2,3,6} , Michelle Monje ^{1,2,3,4,6} Departments of Neurology ¹ , Neurosurgery ² , Pediatrics ³ , Neuroscience ⁵ , and Pathology ⁶ and Institute for Stem Cell Biology & Regenerative Medicine ⁴ , Stanford University
	44	Subject-Specific Volumetric Reconstruction of Biomechanical Arm Models	Anupama Rajan ¹ , Samir Menon ¹ Oussama Khatib ¹ Department of Computer Science ¹ , Stanford University
	45	Optogenetic Control of Nerve Growth Factor Mediated Pathways in Spatial Dimensions for PC-12 Cell Differentiation Model	Aliyah Sarro-Schwartz ¹ , Qunxiang Ong ¹ , Allister McGuire ¹ , Ruyan Zhang ¹ , Bianxiao Cui ¹ Department of Chemistry ¹ , Stanford University
	46	The Role of Spectrin in T Cell Stiffness and Signaling	Yoseph Semma ¹ , Kenneth Hu ² , Manish Butte ³ Departments of Biology ¹ , Biophysics ² , and Pediatrics ³ , Stanford University
	47	Significance of Sleep and Circadian Rhythms in Learning and Memory	Meagan Shinbashi ¹ , Amy Xu ¹ , Bayara Chuluun ¹ , H. Craig Heller ¹ Department of Biology ¹ , Stanford University
	48	Optogenetic Stimulation of VTA Dopamine Neurons in DAT-Cre Mice to Induce a Sleep to Wake Transition	Matias Silvestre ¹ , Ada Eban-Rothschild ¹ , Shibin Li ¹ , William Giardino ¹ , Luis de Lecea ¹ Department of Psychiatry & Behavioral Sciences ¹ , Stanford University
	49	Modeling Familial Dilated Cardiomyopathy with Induced Pluripotent Stem Cells	Zachary Sorey ¹ , Ioannis Karakikes ¹ , Vittavat Termglinchan ¹ , Timon Seeger ¹ , Joseph Wu ¹ , Patricia Nguyen ¹ Cardiovascular Institute ¹ , Stanford University
	50	Investigating RA-mediated Homeostatic Plasticity in vivo	Sona Sulakian ¹ , Lei Ray Zhong ² , Lu Chen ² Departments of Chemistry ¹ and Neurosurgery ² , Stanford University
	51	Regulating Action Sequence via Basal Ganglia Indirect and Direct Pathway Circuitry	Gordon L Sun ¹ , Patrick E. Rothwell ¹ , Robert Malenka ¹ Department of Psychiatry & Behavioral Sciences ¹ , Stanford University
	52	Mechanisms of Neuroligin-3 Activity-Dependent Cleavage and Secretion	Lydia Tam ¹ , Humsa Venkatesh ¹ , Michelle Monje ¹ Department of Neurology ¹ , Stanford University
	53	Fate Mapping of Telomerase Expressing Cells from Neural Stem Cell Niche	Chester Thai ¹ , Chandresh Gajera ¹ , Steven Artandi ^{1,2} Departments of Hematology ¹ and Biochemistry ² , Stanford University
ľ	54	Risk Factors for the Onset of Depression, Anxiety, and Comorbid Depression-Anxiety: A Longitudinal Investigation	Ada Thatcher-James ¹ , Joelle LeMoult ¹ , Ian Gotlib ¹
L			

		Department of Psychology ¹ , Stanford University
55	Targeting Lipogenesis Suppresses Myc, Ras, and Bcr-Abl Lymphomas	Georgia Toal ¹ , Arvin Gouw ¹ , Dean W. Felsher ¹ Department of Medicine (Division of Oncology) ¹ , Stanford University
56	Characterizing the Kinetics of Circulating Tumor DNA Degradation	Jason Wang ^{1,2} , Alex Lovejoy ^{2,3} , Jake Chabon ^{1,2} , Dave Kurtz ^{4,5} , Maximilian Diehn ^{1,2,3} Institute for Stem Cell Biology & Regenerative Medicine ¹ , Stanford Cancer Institute ² , Departments of Radiation Oncology ³ , Medicine (Division of Oncology) ⁴ , and Bioengineering ⁵ , Stanford University
57	Does <i>Toxoplasma gondii</i> Selectively Shed Surface Proteins from its Plasma Membrane During Host Cell Invasion?	Brian Wei ¹ , Felice Kelly ¹ , John Boothroyd ¹ Department of Microbiology & Immunology ¹ , Stanford University
58	A Web-Based Repository of Drug-Induced Cancer Cell Death Phenotypes	Alex Wells ¹ , Marisa Hom ¹ , Scott Dixon ¹ Department of Biology ¹ , Stanford University
59	Analysis of Global Changes in Synaptic Structure Within Cortical Networks	Drew Willoughby ¹ , Marc Carmichael ¹ , Theo Palmer ¹ Department of Neurosurgery ¹ , Stanford University
60	Utilizing Inducible CRISPR Interference for Functional Study of ILF2 & ILF3 in Cell Growth and Proliferation	Timothy Ting-Hsuan Wu ¹ , LingFang Shi ¹ , Peter N. Kao ¹ Department of Medicine (Division of Pulmonary & Critical Care Medicine) ¹ , Stanford University
61	Measuring the Methylation State and Accessibility of a Nondisruptable Intergenic Region of <i>Caulobacter crescentus</i>	Johnny Xu ¹ , Michael Melfi ² , Lucy Shapiro ¹ Departments of Developmental Biology ¹ and Chemistry ² , Stanford University
62	Developing a Tool for Measurement of Synaptic Vesicle Protein Half- Lives	Leena Yin ¹ , Shaoyun Zang ¹ , Richard Reimer ^{1,2} Department of Neurology & Neurological Sciences ¹ , Stanford University; Veterans Affairs Palo Alto Health Care System ²
63	Hsp90 and the Evolution of New Traits	Alex Yuan ¹ , Daniel Jarosz ^{2,3} Departments of Biology ¹ , Chemical & Systems Biology ² , and Developmental Biology ³ , Stanford University
64	The Stimulatory Effect of Bioactive Lipids on Mesoderm Expansion and Cardiomyocyte Cell Cycle Reentry in an hiPSC Model	Yuan Zhang ^{1,2} , Arun Sharma ^{1,2} , and Sean M. Wu ^{1,2,3} Institute for Stem Cell Biology & Regenerative Medicine ¹ , Cardiovascular Institute ² , and Department of Medicine (Division of Cardiovascular Medicine) ³ , Stanford University
65	Understanding the Language of Genomes through Domain Architectures	Isabelle Ziebold ¹ , Andrea Scaiewicz ² , Michael Levitt ^{2,3} Departments of Biology ¹ , Structural Biology ² , and Computer Science ³ , Stanford University
66	Performance Evaluation of an RF-Penetrable Positron Emission Tomography (PET) Insert for Simultaneous PET/MR Imaging	Chen-Ming Chang ^{1, 2} , Brian J. Lee ^{2,4} , Alexander M. Grant ^{2,3} , Ronald Watkins ⁵ , Gary H. Glover ^{2,5,6} , Craig S. Levin ^{2,3,5,6,7} Departments of Applied Physics ¹ , Bioengineering ³ , Mechanical Engineering ⁴ , Radiology ⁵ , Electrical Engineering ⁶ , and Physics ⁷ and Molecular Imaging Program at Stanford (MIPS) ² , Stanford University
67	Less Efficacious Drugs Lead to Softer Sweeps in HIV-1	Alison F Feder ¹ , Soo-Yon Rhee ² , Robert W. Shafer ² , Pleuni S. Pennings ^{1,3} , Dmitri A. Petrov ¹ Departments of Biology ¹ and Medicine (Division of Infectious Diseases) ² , Stanford University; Department of Biology ³ , San Francisco State University
68	Complete Biosynthesis of an Opioid Drug in Yeast and Other Alkaloid Transformation	Stephanie Galanie ¹ , Kate Thodey ² , Isis J. Trenchard ² , Maria Filsinger Interrante ² , Christina D. Smolke ²

		Departments of Chemistry ¹ and Bioengineering ² ,
		Aaron Goodman ¹ , Marcus Feldman ¹
69	Evolution of Hierarchy in Bacterial Metabolic Networks	Department of Biology ¹ , Stanford University
		Marius Cătălin Iordan ¹ , Michelle R. Greene ¹ , Diane M. Beck ^{2,3} , Li Fei-Fei ¹
70	Typicality Sharpens Category Representations in Object-Selective Cortex	Department of Computer Science ¹ , Stanford
, 0	Typromity simplify caregory representations in coject server to conten	University; Beckman Institute ² and Department of Psychology ³ University of Illinois at Urbana-
		Champaign
	Automatic Linac QA: Design and Testing of an Image Acquisition and	Cesare Jenkins ^{1,2} , Dominik Naczynski ¹ , Shu-Jung
71	Processing System Utilizing a Combination of Radioluminescent	Yu', Yong Yang', Lei Xing' Departments of Radiation Oncology ¹ and
	Phosphors, Embedded X-Ray Markers and Optical Measurements	Mechanical Engineering ² , Stanford University
70	A Cell Type Specific Transcriptional Repressor Directs Selective	Jongmin Kim ¹ , Margaret T. Fuller ^{2,3}
12	Upregulation of Terminal Differentiation Program	Biology ² , and Genetics ³ , Stanford University
		Brian J. Lee ¹ , Alexander M. Grant ¹ , Chen-Ming
73	MRI Measurements in the Presence of an RF-Penetrable PET Insert for	Chang ¹ , Ronald Watkins ¹ , Gary H. Glover ¹ , Craig
75	Simultaneous PET/MRI	Molecular Imaging Instrumentation Lab ¹ ,
		Stanford University
		Qian Yi Lee ¹ , Barbara Treutlein ¹ , J. Gray Camp ^{1,2} Winston Koh ¹ Sonheak Sim ³ Stephen
		Quake ^{1,4} , Marius Wernig ^{3,5}
74	Unraveling the Dynamics of Reprogramming of Fibroblasts into Neurons	Departments of Bioengineering ¹ , Developmental
		Biology ² , Applied Physics ⁺ , and Pathology ² and Institute for Stem Cell Biology & Regenerative
		Medicine ³ , Stanford University
		Kristen L. Lurie ^{1,2} , Abhijit A. Gurjarpadhye ^{1,2} ,
	Scanning Fiber Technology for Rapid Volumetric Optical Coherence	E.L. Ginzton Laboratory ¹ and Department of
75	Tomography (OCT) Cystoscopy	Electrical Engineering ² , Stanford University;
		Department of Mechanical Engineering ³ , University of Washington
		Murad R. Mamedov ¹ , Jose H. M. Oliveira ² ,
		David S. Schneider ^{1,2} , Yueh-hsiu Chien ^{1,2} , Mark
76	Repertoire and Role of Gamma-Delta T Cells During Murine Malaria	Stanford Immunology Program ¹ , Department of
		Microbiology & Immunology ² , and Howard
		Hugnes Medical Institute ³ , Stanford University Geoffrey Stanley ¹ Özgün Gökce ² Barbara
		Treutlein ³ , Stephen Quake ^{3,4} , Thomas Südhof ^{2,4}
77	Discrete and Continuous Cell States Revealed by Single Cell Sequencing	Departments of Biophysics ¹ , Molecular &
		Howard Hughes Medical Institute ⁴ , Stanford
		University
		Picha Shunhavanich ^{1,2} , Scott S. Hsieh ² , Norbert J.
78	Fluid-Filled Dynamic Bowtie Filter	Departments of Bioengineering ¹ and Radiology ² ,
		Stanford University
	Safer Treatments Easter Planning: Convey Optimization in Radiation	Baris Ungun ¹ , Stephen Boyd ² , Lei Xing ³ Departments of Bioengineering ¹ Electrical
79	Therapy	Engineering ² , and Radiation Oncology ³ , Stanford
		University
		Sandeep venkataram ¹ , Barbara Dunn ² , Yuping Li ^{1,2} , Atish Agarwala ³ , Lucas Herrisant ² , Kerry
		Samerotte ^{1,4} , Jessica Chang ² , Sasha Levy ^{1,5} ,
80	The Adaptive Mutation Spectrum in Experimentally Evolving Yeast	Jamie Blundell ^{1,3} , Daniel Fisher ³ , Gavin
		Departments of Biology ¹ , Genetics ² , and Applied
		Physics ³ , Stanford University; Department of

		Biology ⁴ , New York University; Laufer Center for Physical & Quantitative Biology ⁵ , Stony Brook University, New York
81	Effects of Biochemical and Mechanical Niche Cues on Messenchymal Stem Cell Chondrogensis in a 3D Hydrogel Platform	Tianyi Wang ¹ , Fan Yang ^{1,2} Departments of Bioengineering ¹ and Orthopaedic Surgery ² , Stanford University
82	An RNA-Based, Generalizable Synthetic Genetic Controller for Dynamic Regulation	Yen-Hsiang Wang ¹ , Christina Smolke ¹ Department of Bioengineering ¹ , Stanford University
83	Using an Instrumented Mouthguard and High Speed Eye Tracking to Study Kinematic Dose and Neurological Response in Contact Sports	Lyndia C. Wu ¹ , Jianliang Tong ² , Jessica A. Little ³ , Jake M. Hartley ³ , Connie Ju ³ , Brian Tang ³ , Jamshid Ghajar ^{2,3} , David B. Camarillo ¹ Departments of Bioengineering ¹ and Neurosurgery ³ and Brain Trauma Foundation ² , Stanford University
84	Utilization of In-depth Photon Counting Detectors Towards X-ray Spectral Imaging: the Benefits from the Depth Information	Yuan Yao ^{1,2} , Hans Bornefalk ⁴ , Scott S. Hsieh ² , Mats Danielsson ⁴ , Norbert J. Pelc ^{1,2,3} Departments of Bioengineering ¹ , Radiology ² , and Electrical Engineering ³ , Stanford University; Department of Physics ⁴ , Royal Institute of Technology, Stockholm, Sweden
85	Omics AnalysIs System for Precision Oncology (OASISPRO): A Web- Based Tool for Tumor Omics Analysis	Kun-Hsing Yu ^{1,2} , Michael Fitzpatrick ³ , Luke Pappas ³ , Jessica Kung ³ , Michael Snyder ² Biomedical Informatics Program ¹ and Departments of Genetics ² and Computer Science ³ , Stanford University
86	Cloud Experimentation for Biology: Systems Architecture and Utility for Online Education and Research	Zahid Hossain ² , Xiaofan Jin ¹ , Engin Bumbacher ³ , Alice Chung ¹ , Stephen Koo ² , Jordan Shapiro ¹ , Cynthia Truong ¹ , Sean Choi ² , Nathan Orloff ¹ , Paulo Blikstein ³ , Ingmar Riedel-Kruse ¹ Departments of Bioengineering ¹ and Computer Science ² and School of Education ³ , Stanford University
87	Modularity of a Feedforward Motif in the Pheromone Signaling Pathway	Oguzhan Atay ¹ , Andreas Doncic ¹ , Daniel S. Fisher ^{1,2} , Jan M. Skotheim ¹ Departments of Biology ¹ and Applied Physics ² , Stanford University
88	The Minimal Cadherin-Catenin Complex Binds to Actin Filaments under Force	Craig D. Buckley ¹ , Jiongyi Tan 2, Karen L. Anderson 3, Dorit Hanein ³ , Niels Volkmann ³ , William I. Weis ^{2,4,5} , W. James Nelson ^{5,6} , Alexander R. Dunn ^{1,2,7} Departments of Chemical Engineering ¹ , Structural Biology ⁴ , Molecular & Cellular Physiology ⁵ , and Biology ⁶ , Biophysics Program ² , and Stanford Cardiovascular Institute ⁷ , Stanford University; Bioinformatics & Structural Systems Biology Program ³ , Sanford-Burnham Medical Research Institute
89	Dynamic <i>N⁶-Methyladenosine</i> Modification of mRNA Disrupts Translation Elongation Dynamics	Junhong Choi ^{1,2} , Ka-Weng Ieong ³ , Hasan Demirci ^{4,5} , Jin Chen ^{1,2} , Måns Ehrenberg ³ , Joseph D. Puglisi ¹ Departments of Structural Biology ¹ and Applied Physics ² , Stanford University; Department of Cell & Molecular Biology ³ , Biomedical Center, Uppsala University; Stanford PULSE Institute ⁴ and Stanford Synchrotron Radiation Lightsource ⁵ , SLAC National Accelerator Laboratory
90	"Seeing" Subcellular Structures: Quantifying Microtubule Organization with a Confocal Microscope and a Computer	Roshni Cooper ¹ , Shaul Yogev ² , Mark Horowitz ¹ , Kang Shen ² Departments of Electrical Engineering ¹ and Biology ² , Stanford University

91	Investigating the Mechanical Response of Human Embryonic Stem Cells with a Tunable Matrigel-Polyacrylamide Composite	Andrew J. Price ¹ , Eva Yi-Hsuan Huang ² , Vittorio Sebastiano ³ , Alexander R. Dunn ^{1,2} Biophysics Program ¹ and Departments of Chemical Engineering ² and Obstetrics & Gynecology ³ , Stanford University
92	Development and Application of High-Resolution Multimodal Methods for Investigating the Dynamics of Nucleoprotein Machines	Ivan E. Ivanov ¹ , Paul Lebel ² , Athena Ierokomos ³ , Zev Bryant ⁴ Departments of Chemical Engineering ¹ , Applied Physics ² , Biophysics ³ , and Bioengineering ⁴ , Stanford University
93	Engineering Patterned Biofilms for Microbial Consortia	Xiaofan Jin ¹ , Ingmar Riedel-Kruse ¹ Department of Bioengineering ¹ , Stanford University
94	Biophysics of Swimming and Host-Seeking in Schistosomiasis cercariae	Deepak Krishnamurthy ¹ , Arjun Bhargava ² , Georgios Katsikis ¹ , Manu Prakash ³ Departments of Mechanical Engineering ¹ , Applied Physics ² , and Bioengineering ³ , Stanford University
95	Role of Sall4 in the Transition from Embryonic Stem Cell to Differentiated States	Ye Henry Li ^{1,2} , Pedro Batista ³ , Eli Zunder ⁴ , Howard Chang ³ , Garry Nolan ⁴ , Wing Hung Wong ⁵ Departments of Structural Biology ¹ , Cancer Biology ³ , Microbiology & Immunology ⁴ , and Statistics ⁵ and Public Policy Program ² Stanford University
96	Evaluation of Multiple Statistical Approaches for CyTOF Exploration	Xiaowei Wang ¹ , Ye Henry Li ^{2,3} , Dangna Li ⁴ , Wing Hung Wong ⁵ School of Mathematical Sciences ¹ , Peking University; Departments of Structural Biology ² and Statistics ⁵ , Public Policy Program ³ , and Institute for Computational & Mathematical Engineering ⁴ , Stanford University
97	A High-Throughput, Multipurpose Microcapillary Platform Technology for Engineering High Affinity Protein-Protein Interactions	Sungwon Lim ¹ , Bob Chen ¹ , Mihalis S. Kariolis ² , Ivan Dimov ³ , Thomas M. Baer ⁴ , Jennifer R. Cochran ^{1,5} Departments of Bioengineering ¹ , Radiation Oncology ² , and Chemical Engineering ⁵ , Institute for Stem Cell Biology & Regenerative Medicine ³ , and Stanford Photonics Research Center ⁴ , Stanford University
98	Electrochemical Monitoring of the Cell-Nanoelectrode Interface	Allister McGuire ¹ , Francesca Santoro ¹ , Ziliang Carter Lin ² , Yi Cui ³ , Bianxiao Cui ¹ Departments of Chemistry ¹ , Applied Physics ² , and Materials Science & Engineering ³ , Stanford University
99	Role of Septate Junctions During Homeostatic Cell Turnover of the Adult Drosophila Midgut	Paola Moreno-Roman ¹ , Lucy O'Brien ² Departments of Biology ¹ and Molecular & Cellular Physiology ² , Stanford University
100	Developmental Phosphoproteomics Identifies CK2 as a Novel Therapeutic Target in Medulloblastoma	Teresa Purzner ¹ , Steve Gygi ² , Josh Elias ³ , Matthew P. Scott ^{1,4} , Yoon-Jae Cho ^{5,6} Departments of Developmental Biology ¹ , Systems Biology ³ , Neurology ⁵ , and Neurosurgery ⁶ , Stanford University; Department of Cell Biology ² , Harvard University; Carnegie Institute of Science ⁴
101	Repurposing of Chromatin Regulators in Epidermal Neoplasia	Adam Rubin ^{1,2} , Brook Barajas ² , Lisa Zaba ² , Howard Chang ² , Paul Khavari ² Program in Stem Cell Biology & Regenerative Medicine ¹ and Program in Epithelial Biology ² , Stanford University
102	Exploratory Study of Atherosclerotic Plaque Using Synchrotron X-Ray Diffraction	Herbert Silva ¹ , Drew Nelson ¹ , Chris Tassone ² , Elsie Gyang ³ , Jason Lee ³ Departments of Mechanical Engineering ¹ and

		Vascular Surgery ³ and SLAC Synchrotron Radiation Lab ² , Stanford University
103	Prospective Changes in the Knee Joint Center of Rotation Relative to the Contralateral Knee and Over Time Provide a Comprehensive View of Kinematic Changes Following Anterior Cruciate Ligament Reconstruction	Matthew R Titchenal ^{1,2,3} , Constance R Chu ^{2,3} , Thomas P Andriacchi ^{1,2,3} Departments of Mechanical Engineering ¹ and Orthopaedic Surgery ³ , Stanford University; Veterans Affairs Palo Alto Health Care System ²
104	Understanding Hedgehog Signaling, One Molecule at a Time	Lucien E. Weiss ¹ , Ljiljana Milenkovic ² , Josh Y. Yoon ¹ , Matthew P. Scott ³ , Tim Stearns ² , W. E. Moerner ¹ Departments of Chemistry ¹ and Biology ² , Stanford University; Carnegie Institution for Science ³
105	Towards Field Identification of Mosquitoes via Mobile Phone Based Acoustics Classification	Erica Castillo ¹ , Haripriya Mukundarajan ¹ , Cooper Newby ¹ , Manu Prakash ² Departments of Mechanical Engineering ¹ and Bioengineering ² , Stanford University
106	Cyclic Strain of the Thoracic Aorta Before and After Endograft Implantation	Sarah Cabreros ¹ , Ga-Young Kelly Suh ² , Ronald L. Dalman ² , Christopher P. Cheng ² Departments of Mechanical Engineering ¹ and Surgery ² , Stanford University
107	Optimization of Geometric Modeling of Human Thoracic Aorta	Yufei D. Zhu ¹ , Ga-Young Kelly Suh ¹ , Christopher P. Cheng ¹ Department of Surgery ¹ , Stanford University
108	Geometric Analysis of the Renal Arteries and Aorta with Complex Endovascular Aortic Aneurysm Repair	John Kim ¹ , Ga-Young Kelly Suh ² , Jason T. Lee ² , Ronald L. Dalman ² , Christopher P. Cheng ² Department of Biology ¹ , University of Chicago; Department of Surgery ² , Stanford University
109	RF Cell-Tags for Intracellular Biological Sensing	Xiaolin Hu ¹ , Mimi Yang ¹ , Kokab Parizi ¹ , Xiaoqing Xu ¹ , Wenye Li ¹ , Demir Akin ² , Michael McConnell ³ , Ada Poon ¹ , HS. Philip Wong ¹ Departments of Electrical Engineering ¹ and Medicine (Division of Cardiovascular Medicine) ³ and CCNE-TR ² , Stanford University
110	Pancreatic Cancer Modeling Using Retrograde Viral Vector Delivery and <i>in vivo</i> CRISPR/Cas9-Mediated Somatic Genome Editing	Shin-Heng Chiou ¹ , Ian P. Winters ¹ , Jing Wang ^{5,6} , Santiago Naranjo ¹ , Hong Zeng ^{4,8} , Pauline Chu ⁷ , Grace E. Kim ⁹ , Seung K. Kim ^{5,6} , Monte M. Winslow ^{1,2,3,4} Departments of Genetics ¹ , Pathology ² , Developmental Biology ⁵ , and Comparative Medicine ⁷ and Cancer Biology Program ³ , Stanford Cancer Institute ⁴ , Howard Hughes Medical Institute ⁶ , and Transgenic, Knockout, & Tumor Model Center ⁸ , Stanford University; Department of Pathology ⁹ , University of California San Francisco
111	Chloroplasts in the Maize Anther Endothecium	Katherine M. Murphy ¹ , Rachel L. Egger ¹ , Virginia Walbot ¹ Department of Biology ¹ , Stanford University
112	Defining and Identifying Autism Resource Gaps	Nikhila Albert ¹ , Jena Daniels ² , Byron Hinebaugh ² , Dennis Wall ² Department of Computer Science ¹ , Princeton University; Department of Pediatrics ² , Stanford University
113	Inhibitory Synapses Are Essential for Gamma Frequency Neuronal Oscillations, But the Time Course of Inhibition Does Not Contribute to Oscillation Frequency	M.B. MacIver ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
114	Chaos Analysis of Brain Transitions at Loss and Recovery of Consciousness	Divya Chander ¹ , Melis K. Sunay ¹ , Christina Dunn ¹ , M. Bruce MacIver ¹ Department of Anesthesia ¹ , Stanford University
115	Subcellular Recruitment of Endocytosis Machinery by Nanostructure- Induced Membrane Curvatures	Wenting Zhao ¹ , Lindsey Hanson ² , Praveen Chowdary ² , Jessica Marks ³ , Alexandre Grassart ³ , David G. Drubin ³ , Yi Cui ^{1,4#} , Bianxiao Cui ^{2#}

		(#corresponding authors) Departments of Materials Science & Engineering ¹ and Chemistry ² , Stanford University; Department of Molecular & Cell Biology ³ , University of California, Berkeley; Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory ⁴
116	The Development of Modified Saxitoxins for Studies of NaV Channel Regulation	Darren Finkelstein ¹ , Arun Thottumkara ¹ , Luke Kaplan ¹ , Bianxiao Cui ¹ , J. Du Bois ¹ Department of Chemistry ¹ , Stanford University
117	What Stabilizes the Ectomycorrhizal Mutualism? An Experimental Test of Partner Choice by <i>Pinus muricata</i> in Association with <i>Suillus brevipes</i>	Laura Bogar ¹ , Kabir Peay ¹ Department of Biology ¹ , Stanford University
118	Assessing Coprophilous Fungal Succession in Tule Elk Dung: Molecular vs. Culture Methods	Nora Dunkirk ¹ , Jason Stajich ² , Kabir Peay ¹ Department of Biology ¹ , Stanford University; Department of Plant Pathology & Microbiology ² , University of California, Riverside
119	Evaluating Cardiac Tissue Engineering Therapy by Strain Imaging and Analysis	Xulei Qin ¹ , Johannes Riegler ¹ , Qi Shen ¹ , Wolfram Zimmermann ⁴ , Joe Gold ¹ , Joseph C. Wu ^{1.2.3} Stanford Cardiovascular Institute ¹ ; Departments of Medicine ² and Radiology ³ , Stanford University; Department of Pharmacology ⁴ , Universitätsmedizin Göttingen, Germany
120	Pushing Single Cell Scanning Electron Microscopy to the Limit	Francesca Santoro ¹ , Wenting Zhao ^{1,2} , Allister McGuire ¹ , Hsyn-Ya Lou ¹ , Bianxiao Cui ¹ Departments of Chemistry ¹ and Materials Science & Engineering ² , Stanford University
121	Optical BioSensor for Detecting Markers of Traumatic Brain Injury	Fariah Mahzabeen ¹ , Jelena Levi ^{2,4} , James L. Zehnder ³ , Sanjiv S. Gambhir ^{2,4} , James S. Harris ¹ Departments of Electrical Engineering ¹ , Radiology ² , and Hematology ³ and Canary Center for Cancer Early Detection ⁴ , Stanford University
122	Signal Quality of Endovascular Electroencephalography	Bryan D. He ^{1,2,3*} , Mosalam Ebrahimi ^{1,2*} , Leon Palafox ^{1,2} , Lakshminarayan Srinivasan ^{1,2} (*equal contribution) Neural Signal Processing Laboratory ¹ and Department of Radiology ² , Stanford University; Department of Computer Science ³ , California Institute of Technology
123	Feedback of Respiratory Patterns to Improve Non-Sedated Pediatric MRI	Shreyan Jain ¹ , Joseph Cheng ¹ , Tao Zhang ¹ , Shreyas Vasanawala ¹ Department of Radiology ¹ , Stanford University
124	Exosomes as a Mechanism of Small RNA-Mediated Intercellular Communication in the Enteric Parasite <i>Entamoeba histolytica</i>	Pedro Morgado ¹ , Upinder Singh ^{1,2} Departments of Medicine (Division of Infectious Diseases) ¹ and Microbiology & Immunology ² , Stanford University
125	Use of Machine Learning for Behavioral Distinction of Autism and ADHD	Marlena Duda ¹ , Ralph Ma ¹ , Nick Haber ¹ , Dennis P. Wall ¹ Department of Pediatrics (Division of Systems Medicine) ¹ , Stanford University
126	AAK1 and GAK Regulate Intracellular Viral Trafficking and Are Potential Targets for Broad-Spectrum Antivirals	Elena Bekerman ¹ , Gregory Neveu ¹ , Jennifer Brannan ² , Ana Shulla ³ , Szu-Yuan Pu ¹ , Claude Nagamine ⁴ , Glenn Randall ³ , John Dye ² , Shirit Einav ¹ Departments of Medicine (Infectious Diseases) ¹ and Comparative Medicine ⁴ , Stanford University; US Army Medical Research Institute of Infectious Diseases ² ; Department of Microbiology ³ , the University of Chicago
127	Development of Theta Rhythm in Hippocampal Formation Slices Perfused with 5-HT1A Antagonist, (S)WAY 100135	Paulina D. Kaźmierska ^{1,2} , Jan Konopacki ² , M. Bruce MacIver ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University; Department

		of Neurobiology ² , University of Łódź
128	Chemical Inhibition of Apicoplast Replication in Malaria Parasites	Katherine Amberg-Johnson ¹ , Ellen Yeh ² Departments of Microbiology & Immunology ¹ and Biochemistry ² , Stanford University
129	Telomere Extension Using Nucleoside-Modified mRNA and Exosomes as a Novel Therapeutic Tool	John Ramunas ¹ *, Eduard Yakubov ² *, Colin Holbrook ¹ , John P. Cooke ² , and Helen M. Blau ¹ (*equal contribution) Baxter Laboratory for Stem Cell Biology ¹ , Stanford University; Center for Cardiovascular Regeneration ² , Methodist Hospital Research Institute, Houston
130	New Diagnostic Technology Based on Cell-Imprinted Polymers and Anharmonic Detection Technique	Niloufar Hosseini Nassab ¹ , Maria Dulay ¹ , Kangning Ren ² , Sourav Gosh ³ , Richard Zare ¹ Department of Chemistry ¹ , Stanford University; Department of Chemistry ² , Hong Kong Baptist University; School of Mechanical & Manufacturing Engineering ³ , Loughborough University, England
131	Abnormal Eye Movement Behavior During Reading in Parkinson's Disease	Caroline Yu ¹ , Timothy Lee ¹ , M. Ali Shariati ¹ , Y. Joyce Liao ¹ Department of Ophthalmology ¹ , Stanford University
132	High-Resolution Lineage Mapping of Myogenesis in vivo	Ermelinda Porpiglia ¹ , Ben Cosgrove ¹ , Sean Bendall ² , Wendy J. Fantl ² , Garry P. Nolan ² , Helen M. Blau ¹ Baxter Laboratory for Stem Cell Biology ¹ and Department of Microbiology & Immunology ² , Stanford University
133	3D Super-Resolution Fluorescence Microscopy with the Corkscrew Point Spread Function	Maurice Y. Lee ¹ , Matthew D. Lew ² , W. E. Moerner ³ Biophysics Program ¹ and Department of Chemistry ³ , Stanford University; Department of Electrical & Systems Engineering ² , Washington University
134	Quantitative Analysis of Multivariate Changes in Frequency and Marker Expression in Cell Subsets	Darya Orlova ¹ , Shanel Tsuda ¹ , Stephen Meehan ² , Noah Zimmerman ² , Connor Meehan ³ , Jeffrey Waters ¹ , Eliver Ghosn ¹ , Alex Filatenkov ⁴ , Gleb Kolyagin ⁵ , Guenther Walther ² , Leonore Herzenberg ¹ Departments of Genetics ¹ , Statistics ² , and Division of Immunology & Rheumatology ⁴ , Stanford University; Department of Mathematics ³ , California Institute of Technology; work was done without affiliation to any institution ⁵
135	Desorption/Ionization Droplet Delivery Mass Spectrometry for High- Resolution Single-Cell Analysis and Imaging	Jae Kyoo Lee ^{1,2} , Hong Gil Nam ² , Richard N. Zare ¹ Department of Chemistry ¹ , Stanford University; Center for Plant Aging Research ² , Institute for Basic Science, Daegu Gyeongbuk Institute of Science & Technology, Daejeon, Korea
136	Moving Beyond Tension: Epithelium Reorganization in Response to Shear Stress	Ehsan Sadeghipour ¹ *, Miguel Garcia ² *, James W. Nelson ² , Beth Pruitt ¹ (*equal contribution) Departments of Mechanical Engineering ¹ and Biological Sciences ² , Stanford University
137	Randomized, Controlled, Blinded, Pilot Study Using an Oral Food Supplement in Infants at Risk for Food Allergy, to Assess Food Allergy Prevention	Efren Rael ^{1,2,3} , Kari Nadeau ^{1,2,3} Sean N. Parker Center for Allergy & Asthma Research ¹ and Departments of Medicine (Division of Pulmonary, Allergy, & Critical Care Medicine) ² and Pediatrics (Division of Allergy, Immunology, & Rheumatology) ³ , Stanford University

138	Solid-State NMR Studies of Bacterial Cell Walls: Peptidoglycan and Teichoic Acids in <i>S. aureus</i>	Joseph A. H. Romaniuk ¹ , David Rice ¹ , Lynette Cegelski ¹ Department of Chemistry ¹ , Stanford University
139	Utility of Ferumoxytol as an MR Contrast Agent for Monitoring Anti- CD47 Treatment	Jim Q. Ho ^{1,2} , Saeid Zanganeh ^{1,2} , Olga D. Lenkov ^{1,2} , Rogelio Esparza ^{3,4} , Suzana Kahn ^{3,4} , Samuel Cheshier ^{3,4} , Heike E. Daldrup-Link ^{1,2} Departments of Radiology ¹ and Neurosurgery ³ , Molecular Imaging Program at Stanford (MIPS) ² , Institute for Stem Cell Biology & Regenerative Medicine ⁴ , Stanford University
140	Developmental Expression of Opioid Receptors in Sensory Neural Circuits	Sarah Low ^{1,2,3} , Chaudy Sotoudeh ^{1,2,3} , Andrew Shuster ^{1,2,3} , Gregory Scherrer ^{1,2,3} Departments of Anesthesiology, Perioperative, & Pain Medicine ¹ and Molecular & Cellular Physiology ² and Stanford Neurosciences Institute ³ , Stanford University
141	Protein Trafficking to the Apicoplast in <i>Plasmodium falciparum</i>	Michael J. Boucher ^{1,2} , Wandy L. Beatty ⁴ , Ellen Yeh ^{1,2,3} Departments of Microbiology & Immunology ¹ , Biochemistry ² , and Pathology ³ , Stanford University; Department of Molecular Microbiology ⁴ , Washington University School of Medicine
142	Improving the Identification of Neonatal Encephalopathy: Utility of a Web-Based Video Tool	Autumn Ivy ¹ , Sarah Bahm ² , Catherine Clark ³ , Krisa van Meurs ^{2,3} , Courtney Jane Wusthoff ^{1,3} Division of Child Neurology ¹ , Department of Pediatrics ² , Division of Neonatology ³ , Stanford University
143	Diabetes Impacts Brain Structure in Patients Undergoing Carotid Artery Interventions	Elizabeth Hitchner ¹ , Shruti Rao ¹ , Salil Soman ³ , Wei Zhou ^{1,2} Veterans Affairs Palo Alto Health Care System ¹ ; Department of Vascular Surgery ² , Stanford University; Department of Radiology ³ , Harvard Medical School
144	Acute Formation of Aberrant Excitatory Connections onto Pyramidal Cells Following Neocortical Injury	Feng Gu ¹ , Isabel Parada ¹ , D. Koji Takahashi ¹ , David A. Prince ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
145	Direct Analysis of Drugs in Blood Samples by Polymer Spray Mass Spectrometry	Maria T. Dulay ¹ , Livia S. Eberlin ¹ , Richard N. Zare ¹ Department of Chemistry ¹ , Stanford University
146	Malaria Prenylation: Uncovering New Parasite Biology	Jolyn Gisselberg ¹ , Nathan Westcott ² , Howard Hang ² , Ellen Yeh ¹ Department of Biochemistry ¹ , Stanford University; Laboratory of Chemical Biology & Microbial Pathogenesis ² , The Rockefeller University, New York
147	Force Analysis of FLIM-FRET Images from Developing Zebrafish	Melanie Malinas ¹ , Andrea Hamilton ¹ , Romain Madelaine ² , Diego Ramallo ³ , Honesty Kim ¹ , Angela Barth ¹ , Alex Dunn ³ , Ingmar Riedel- Kruse ¹ Departments of Bioengineering ¹ , Psychiatry & Behavioral Sciences ² , and Chemical Engineering ³ , Stanford University
148	3D Matrix Stiffness Regulates Chromatin Organization	Ryan Stowers ¹ , Ovijit Chaudhuri ¹ Department of Mechanical Engineering ¹ , Stanford University
149	An Aversive Input to the Nucleus Accumbens Is Required for Opiate Dependence	Yingjie Zhu ¹ , Carl Wienecke ¹ , Gregory Nachtrab ¹ , Xiaoke Chen ¹ Department of Biology ¹ , Stanford University
150	Pilot Study of Diffusion Weighted Magnetic Resonance Imaging to Identify Spermatogenesis	Michael L. Eisenberg ¹ , Valentina Taviani ² , Tandy Aye ³ , William Kennedy ¹ , Shreyas Vasanawala ² Departments of Urology ¹ , Radiology ² , and

		Pediatrics ³ , Stanford University
151	A Drug Repositioning Approach for Pancreatic Cancer Treatment	Ramya Keerthi Pasupuleti ¹ , Pawel K Mazur ¹ , Julien Sage ¹ Departments of Pediatrics ¹ , Stanford University
152	<i>CDKN2B</i> Regulates Efferocytosis and Phenotypic Switching in Atherosclerosis	Daniel DiRenzo ^{1,2} , Yoko Kojima ^{1,2} , Vivek Nanda ^{1,2} , Nicholas J. Leeper ^{1,2} Department of Surgery ¹ and Stanford Cardiovascular Institute ² , Stanford University
153	<i>CDKN2B</i> Regulates <i>TGFβ1</i> Mediated Smooth Muscle Cell Recruitment to Ischemic Blood Vessels	Vivek Nanda ¹ , Kelly P. Downing ¹ , Yoko Kojima ¹ , Daniel M. DiRenzo ¹ , Shannon D. Brady ¹ , Joshua M. Spin ² , Andrew J. Connolly ³ , Sonny Dandona ⁴ , Ljubica Perisic ⁵ , Ulf Hedin ⁵ , Lars Maegdefessel ⁶ , Jessie Dalman ¹ , Liang Guo ⁷ , XiaoQing Zhao ⁷ , Frank D. Kolodgie ⁷ , Renu Virmani ⁷ , Harry R. Davis Jr. ⁷ , Nicholas J. Leeper ^{1,2} Departments of Surgery ¹ , Medicine ² , and Pathology ³ Stanford University; Department of Medicine ⁴ , McGill University, Montreal, Canada; Departments of Molecular Medicine & Surgery ⁵ and Medicine ⁶ , Karolinska Institute, Stockholm, Sweden; CVPath Institute ⁷ , Gaithersburg, Maryland
154	Effect of a Changing in Aboveground Plant Community on Soil Properties and Microorganism Communities	Marie Duhamel ¹ , Kabir Peay ¹ Department of Biology ¹ , Stanford University
155	Building a Cellular Switch with the Prozone Effect	Sanghoon Ha ¹ , James E. Ferrell Jr. ^{1,2} Departments of Chemical & Systems Biology ¹ and Biochemistry ² , Stanford University
156	The Differential Role of Calcium on Glutamatergic and GABAergic Synaptic Transmission	Beza A Dagne ¹ , Melis K. Sunay ¹ , Anand Rajagopal ¹ , Bruce MacIver ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
157	A Hardware-Accelerated Programming System for Sequence Homology Search	Yatish Turakhia ¹ , Albert Ng ¹ , William Dally ^{1,2} , Gill Bejerano ^{2,3} Departments of Electrical Engineering ¹ , Computer Science ² , and Developmental Biology ³ , Stanford University
158	Gamma Radiation Effects on CNS Circuit Function Provide a Mechanism for Antidepressant Action	Melis K. Sunay ¹ , Beza A. Dagne ¹ , Spencer Orbegozo ¹ , Gabriella Bertaccini ¹ , Hiroshi Doi ² , Rona G. Giffard ¹ , Susan J. Knox ² , M. Bruce MacIver ¹ Departments of Anesthesiology, Perioperative & Pain Medicine ¹ and Radiation Oncology ² , Stanford University
159	Light-Controlled Activation of Raf/ERK and AKT Reveals Distinctive Roles in Preconditioning Against H ₂ O ₂ -Induced Oxidative Stress	Qunxiang Ong ¹ , Kai Zhang ² , Shunling Guo ¹ , Liting Duan ¹ , Eleanor Collier ¹ , Bianxiao Cui ¹ Department of Chemistry ¹ , Stanford University; Department of Biochemistry ² , University of Illinois at Urbana-Champaign
160	Promotion of Bone Formation by Macrophages	Florence Loi ¹ , Luis A. Córdova ^{1,2} , Jukka Pajarinen ¹ , Tzu-hua Lin ¹ , Zhenyu Yao ¹ , Stuart Goodman ^{1,3} Departments of Orthopaedic Surgery ¹ and Bioengineering ³ , Stanford University; Department of Oral & Maxillofacial Surgery ² , University of Chile
161	Autism Glass	Azar Fazel ¹ , Catalin Voss ² , Nick Haber ³ , Catherine Xu ² , Terry Winograd ² , Carl Feinstein ⁴ , Dennis Wall ³ Departments of Electrical Engineering ¹ , Computer Science ² , Pediatrics ³ , and Psychiatry & Behavioral Sciences ⁴ , Stanford University

162	Electro-Responsive Polymers for Drug Delivery	Devleena Samanta ¹ , Niloufar Hosseini Nassab ¹ , Richard Zare ¹ Department of Chemistry ¹ , Stanford University
163	Celecoxib Nanoparticles for Therapeutic Angiogenesis	Katy Margulis ^{1,2} , Evgenios Neofytou ³ , Ramin Beygui ^{3,4} , Richard Zare ^{1,2} Departments of Chemistry ¹ and Cardiothoracic Surgery ² , Falk Cardiovascular Research Center ³ , Stanford University; Heart & Vascular Center ⁴ , NorthBay Medical Center, Fairfield
164	Statistical Algorithms for Improved Detection of Circular and Linear Splicing from RNA-Seq	Linda Szabo ¹ , Peter Wang ² , Julia Salzman ² Departments of Biomedical Informatics ¹ and Biochemistry ² , Stanford University
165	Enhancing Learning and Memory via the Presynaptic Action of PirB Receptor	Maja Djurisic ¹ , Mehrdad Shamloo ² , Carla J. Shatz ¹ Departments of Biological Sciences ¹ and Neurosurgery ² , Stanford University
166	New Methods in Quantification to Win the Fight Against Parasitic Disease	Nathaniel I. Strong ¹ , Minkyu Kim ² , Sindy K.Y. Tang ² , Craig Criddle ¹ Departments of Civil & Environmental Engineering ¹ and Mechanical Engineering ² , Stanford University
167	Abnormal Eye Movement Behavior and Reading Left-to-Right after Stroke Due to Homonymous Visual Field Defect	Jaclyn H. Hwang ¹ , M. Ali Shariati ¹ , Caroline Yu ¹ , Y. Joyce Liao ¹ Department of Ophthalmology ¹ , Stanford University
168	CRISPR/Cas9 Versus RNAi: Identification of Human Essential Genes Using Genome-Wide Screens	David W. Morgens ¹ , Richard M. Deans ² , Amy Li ¹ , Michael C. Bassik ^{1,3} Departments of Genetics ¹ and Chemistry ² and Chemistry, Engineering, & Medicine for Human Health (ChEM-H) ³ , Stanford University;
169	Targeting 24-nt phasiRNA Biogenesis and Function in Maize with CRISPR-Mediated Mutants	Han Zhang ¹ , Blake C. Meyers ^{2,3} , Bing Yang ⁴ , Virginia Walbot ¹ Department of Biology ¹ , Stanford University; Department of Plant & Soil Sciences ² and Delaware Biotechnology Institute ³ , University of Delaware; Department of Genetics, Development & Cell Biology ⁴ , Iowa State University
170	Brain Stimulation with Focused Ultrasound: The Mechanism of Action	Jan Kubanek ^{1,2} , Stephen Baccus ² , Miriam Goodman ² Departments of Molecular & Cell Physiology ¹ and Neurobiology ² , Stanford University