

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Program Symposium Poster Session February 17, 2016

POSTER #	TITLE	AUTHORS
1	Developmental Phosphoproteomics Identifies CK2 as a Novel Therapeutic Target in Medulloblastoma	Teresa Purzner ¹ , Steve Gygi ² , Josh Elias ³ , Matthew P. Scott ^{1,4} , Yoon-Jae Cho ^{5,6} Departments of Developmental Biology ¹ , Systems Biology ³ , Neurology ⁵ , and Neurosurgery ⁶ , Stanford University; Department of Cell Biology ² , Harvard University; Carnegie Institute of Science ⁴
2	Engineering Emergent Multicellular Behavior Through Synthetic Adhesion Programs	David Glass ¹ , Ingmar Riedel-Kruse ¹ Department of Bioengineering ¹ , Stanford University
3	Engineering Patterned Biofilms for Microbial Consortia	Xiaofan Jin ¹ , Ingmar Riedel-Kruse ¹ Department of Bioengineering ¹ , Stanford University
4	Targeted Delivery of siRNA using Knottin-Protein Conjugates for Glioblastoma	Sungwon Lim ¹ , Sandra M. DePorter ¹ , Camila Kofman ² , Jennifer R. Cochran ^{1,2} Departments of Bioengineering ¹ and Chemical
5	Frequency-Selective Control of Cortical and Subcortical Networks by Central Thalamus	Engineering ² , Stanford University Jia Liu ¹ , Hyun Joo Lee ¹ , Andrew Weitz ² , Zhongnan Fang ¹ , Peter Lin ¹ , ManKin Choy ¹ , Robert Fisher ¹ , Vadim Pinskiy ³ , Alexander Tolpygo ³ , Partha Mitra ³ , Nicholas Schiff ⁴ , Jin Hyung Lee ^{1,2} Departments of Neurology & Neurological Sciences ¹ and Bioengineering ² , Stanford University; Cold Spring Harbor Laboratory ³ ; Department of Neurology ⁴ , Weill Cornell Medical College
6	Improved Phylogenetic Ordinations for Microbiome Data	Julia Fukuyama ¹ , Susan Holmes ¹ Department of Statistics ¹ , Stanford University
7	3D Nanoelectrodes for Electrophysiology: How Size Affects Seal Resistance	Allister McGuire ¹ , Francesca Santoro ¹ , Ziliang Carter Lin ² , Yi Cui ³ , Bianxiao Cui ¹ Departments of Chemistry ¹ , Applied Physics ² , and Materials Science & Engineering ³ , Stanford University
8	Deep Learning Models of the Retinal Response to Natural Scenes	Lane McIntosh ¹ *, Niru Maheswaranathan ¹ *, Aran Nayebi ² , Surya Ganguli ³ , Stephen A. Baccus ⁴ (*equal contribution) Neuroscience Program ¹ and Departments of Computer Science ² , Applied Physics ³ , and Neurobiology ⁴ , Stanford University
9	Enhancer-Promoter Contact Dynamics in Stem Cell Differentiation	Brook Barajas ¹ , Adam Rubin ¹ , Mayra Furlan- Magaril ² , Imani Howard ¹ , Daniel Kim ¹ , Max Mumbach ¹ , Howard Chang ¹ , Peter Fraser ² , Paul Khavari ¹ Department of Epithelial Biology ¹ , Stanford University; Program in Nuclear Dynamics ² , Babraham Institute
10	Learning Causal Disease Variants and Transcription Factor Binding Through Deep Learning Sequence-to-Chromatin Accessibility Model	Peyton Greenside ¹ , Avanti Shrikumar ² , Jason Buenrostro ³ , Ryan Corces ⁴ , Ravi Majeti ⁵ , Howard Chang ⁴ , Will Greenleaf ³ , Anshul Kundaje ^{2,3} Biomedical Informatics Training Program ¹ , Departments of Computer Science ² , Genetics ³ , and Madiaina (Division of Lematalagu) ⁵ , and

and Medicine (Division of Hematology)⁵, and Center for Personal Dynamic Regulomes⁴,

Stanford University

11	Elucidating the Mechanisms Underpinning the Promotion of Plant Iron Acquisition by Root Microbiota	Mathias J.E.E.E. Voges ^{1,2} , Yang Bai ³ , Ruben G. Oter ³ , Haruhiko Inoue ³ , Paul Schulze-Lefert ³ , Elizabeth S. Sattely ² Departments of Bioengineering ¹ and Chemical Engineering ² , Stanford University; Department of Plant Microbe Interactions ³ , Max Planck Institute for Plant Breeding Research, Germany
12	Physical Modeling of Chromosome Dynamics Reveals Influence of Stress Communication between Connected Loci	Thomas J. Lampo ¹ , Andrew S. Kennard ² , Andrew J. Spakowitz ^{1,2} Department of Chemical Engineering ¹ and Biophysics Program ² , Stanford University
13	Collective Ciliary Dynamics Govern Complex Locomotive Behavior in a Simple Animal - A Multi-Scale Approach	Matthew Bull ¹ , Manu Prakash ² Departments of Applied Physics ¹ and Bioengineering ² , Stanford University
14	Biophysics of Swimming and Host-Seeking in Schistosoma mansoni cercariae	Deepak Krishnamurthy ¹ , Georgios Katsikis ¹ , Arjun Bhargava ² , Manu Prakash ³ Departments of Mechanical Engineering ¹ , Applied Physics ² , and Bioengineering ³ , Stanford University
15	A Novel Split Firefly Luciferase Complementation Strategy for Interrogating the Regulation of SNAP29 Homodimerization in Starvation-Induced Autophagy	Ian Y. Chen ¹ , Thillai Veerapazham ² , Eric Marceau ³ , Jon Stack ³ , Chun Liu ³ , Nazish Sayed ³ , Elena Matsa ³ , Ramasamy Paulmurugan ² , Joseph C. Wu ^{1,2,3} Departments of Medicine (Division of Cardiovascular Medicine) ¹ and Radiology ² , and Stanford Cardiovascular Institute ³ , Stanford University
16	Cell-Based Tissue Engineering Treatment Restores Active and Passive Tension Properties in Mouse Model of Volumetric Muscle Loss	Melinda Cromie ^{1,2,3} , Marco Quarta ^{2,3} , Justin Blonigan ³ , Robert Chacon ³ , Thomas Rando ^{2,3} Departments of Mechanical Engineering ¹ and Neurology ² , Stanford University; Center for Tissue Regeneration ³ , VA Palo Alto Health Care System
17	Investigating Folding and Catalysis of the glmS Ribozyme Riboswitch at the Single-Molecule Level	Andrew Savinov ¹ , Steven M. Block ^{2,3} Biophysics Program ¹ and Departments of Applied Physics ² and Biology ³ , Stanford University
18	Small Cell Number ChIP-seq to Probe Epigenetic Regulation in Stem Cells	Elizabeth Chen ¹ , Mark Zarnegar ¹ , Michael Clarke ¹ Department of Stem Cell Biology & Regenerative Medicine ¹ , Stanford University
19	Data-Driven Structural Priors for Shape Completion	Minhyuk Sung ¹ , Vladimir G. Kim ^{1,2} , Roland Angst ^{1,3} , Leonidas Guibas ¹ Department of Computer Science ¹ , Stanford University; Adobe Research ² ; Max Planck Institute for Informatics ³
20	Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model View	Hao Su ¹ , Charles R. Qi ² , Yangyan Li ¹ , Leonidas J. Guibas ¹ Departments of Computer Science ¹ and Electrical Engineering ² , Stanford University
21	3D-Assisted Feature Synthesis for Novel Views of an Object	Hao Su ¹ , Fan Wang ² , Eric Yi ² , Leonidas Guibas ¹ Departments of Computer Science ¹ and Electrical Engineering ² , Stanford University
22	Insights into Mutational Biases from Deep Sequencing of Natural and Laboratory Populations of <i>Drosophila melanogaster</i>	Zoe June Assaf ^{1,2} , Dmitri A. Petrov ² Departments of Genetics ¹ and Biology ² , Stanford University
23	Microribbon-Based Hydrogels Induced Mesenchymal Stem Cells to Undergo Endochondral Ossification In Vivo	Bogdan Conrad ¹ , Li-Hsin Han ² , Fan Yang ^{2,3} Departments of Stem Cell Biology & Regenerative Medicine ¹ , Orthopaedic Surgery ² , and Bioengineering ³ , Stanford University
24	The Coding of Cutaneous Temperature in the Spinal Cord	Chen Ran ¹ , Mark A. Hoon ² , Xiaoke Chen ¹ Department of Biology ¹ , Stanford University; Molecular Genetics Unit, Laboratory of Sensory Biology ² , National Institute of Dental &

		Craniofacial Research-National Institutes of
25	Auto-Calibrating Wave-CS for Motion-Robust Accelerated MRI	Health Feiyu Chen ¹ , Tao Zhang ^{1,2} , Joseph Y. Cheng ^{1,2} , John M. Pauly ¹ , Shreyas S. Vasanawala ² Departments of Electrical Engineering ¹ and Radiology ² , Stanford University
26	Bilateral Assessment of Cartilage with UTE T2* Quantitative MRI and Relationships with Walking Mechanics Two Years after Anterior Cruciate Ligament Reconstruction	Matthew R. Titchenal ^{1,2,3} , Ashley A. Williams ^{2,3} , Eric F. Chehab ^{1,3,4} , Jessica L. Asay ^{1,3} , Jason L. Dragoo ^{2,3} , Garry E. Gold ^{2,4,5} , Timothy McAdams ² , Thomas P. Andriacchi ^{1,2,3} , Constance R. Chu ^{2,3} Departments of Mechanical Engineering ¹ , Orthopaedic Surgery ² , Bioengineering ⁴ , and Radiology ⁵ , Stanford University; VA Palo Alto Health Care System ³
27	Regularized Inversion of Metallic Implant Susceptibility from B0 Field Maps	Xinwei Shi ^{1,2} , Daehyun Yoon ¹ , Kevin M. Koch ³ , Brian A. Hargreaves ^{1,2} Departments of Radiology ¹ and Electrical Engineering ² , Stanford University; Department of Radiology ³ , Medical College of Wisconsin
28	Dynamic Expression and Chromatin Changes During Embryonic Cortical Inhibitory Neuron Specification and Direct Conversion of Fibroblasts to Neurons	Cheen Euong Ang ¹ , Orly Wapinski ² , Howard Chang ² , Marius Wernig ¹ Institute for Stem Cell Biology & Regenerative Medicine ¹ and Program in Epithelial Biology ² , Stanford University
29	Effect of Matrix Stiffness on Human Pluripotent Stem Cells Is Dependent upon Biochemical Cues	Soah Lee ¹ , Xinming Tong ² , Fan Yang ^{2,3} Departments of Materials Science & Engineering ¹ , Orthopaedic Surgery ² , and Bioengineering ³ , Stanford University
30	Enhancing Adipose-Derived Stem Cell-Based Cartilage Regeneration Using Macroporous Microribbon Scaffolds	Heather Rogan ¹ , Krista Chew ¹ , Fan Yang ^{1,2} Departments of Bioengineering ¹ and Orthopaedic Surgery ² , Stanford University
31	Engineering of Cytochromes P450 from Plant Secondary Metabolism	Amy Calgaro ¹ , Gülbenk Anarat-Cappillino ¹ , Gert Kiss ² , Elizabeth Sattely ¹ Departments of Chemical Engineering ¹ and Chemistry ² , Stanford University
32	Optics Based Method for Ionizing Radiation Photon Detection in PET	Li Tao ¹ , Craig S. Levin ^{1,2,3,4} Departments of Electrical Engineering ¹ , Radiology ² , Physics ³ , and Bioengineering ⁴ , Stanford University
33	Elucidation of Podophyllotoxin Biosynthetic Genes	Warren Lau ¹ , Elizabeth S. Sattely ¹ Department of Chemical Engineering ¹ , Stanford University
34	Gene-Centric Discovery of Novel Secondary Metabolite Pathways in Arabidopsis thaliana	Jakub Rajniak ¹ , Elizabeth S. Sattely ¹ Department of Chemical Engineering ¹ , Stanford University
35	Assessment of Psychomotor Skills for Surgical Trainees	Pankaj Sharma ¹ , Sakti Srivastava ² Departments of Electrical Engineering ¹ and Surgery ² , Stanford University
36	Omics AnalySIs System for PRecision Oncology (OASISPRO): A Web- Based Omics Analysis Tool for Clinical Phenotype Prediction	Kun-Hsing Yu ^{1,2} , Michael Fitzpatrick ³ , Luke Pappas ³ , Jessica Kung ³ , Warren Chan ¹ , Michael Snyder ² Biomedical Informatics Program ¹ and Departments of Genetics ² and Computer Science ³ , Stanford University
37	Typicality Sharpens Category Representations in Object-Selective Cortex	Marius Cătălin Iordan ¹ , Michelle R. Greene ¹ , Diane M. Beck ² , Li Fei-Fei ¹ Department of Computer Science ¹ , Stanford University; Beckman Institute and Psychology Department ² , University of Illinois
38	3D Super-Resolution Fluorescence Microscopy with the Corkscrew Point Spread Function	Maurice Y. Lee ¹ , Matthew D. Lew ² , W. E. Moerner ³

		Biophysics Program ¹ and Department of Chemistry ³ , Stanford University; Department of Electrical & Systems Engineering ² , Washington University
39	Optogenetic Control of Molecular Motors and Organelle Distributions in Cells	Liting Duan ¹ *, Daphne Che ¹ *, Kai Zhang ¹ , Qunxiang Ong ¹ , Shunling Guo ¹ , Bianxiao Cui ¹ (*equal contribution) Department of Chemistry ¹ , Stanford University
40	The Dual Characteristics of Light-Induced Cryptochrome 2, Homooligomerization and Heterodimerization	Daphne Che ¹ *, Liting Duan ¹ *, Kai Zhang ¹ , Bianxiao Cui ¹ (*equal contribution) Department of Chemistry ¹ , Stanford University
41	Extracellular Matrix Malleability Regulates Breast Cancer Cell Invasion	Katrina Wisdom ¹ , David J. Mooney ² , Ovijit Chaudhuri ¹ Department of Mechanical Engineering ¹ , Stanford University; School of Engineering & Applied Sciences ² , Harvard University
42	Genetic Dissection of Hepatitis C Virus Host Factors through a Genome- Scale CRISPR Screen	Andreas S. Puschnik ¹ , Karim Majzoub ¹ , Susan M. Brewer ¹ , Miguel A. Mata ¹ , Peter Sarnow ¹ , Jan E. Carette ¹ Department of Microbiology & Immunology ¹ , Stanford University
43	Improved Detection of Targeted Microbubbles with Ultrasound Using a Coherence-Based Beamformer	Dongwoon Hyun ¹ , Lotfi Abou-Elkacem ² , Juergen K. Willmann ² , Jeremy J. Dahl ² Departments of Bioengineering ¹ and Radiology ² , Stanford University
44	DNA Methylation Subtyping of Head and Neck Squamous Cell Carcinoma Reveals Smoking as a Determinant of Disease Heterogeneity and Prognosis	Kevin Brennan ^{1,2} , Julie Koenig ¹ , John B. Sunwoo ³ , Olivier Gevaert ^{1,2} Stanford Center for Biomedical Informatics Research ¹ and Departments of Medicine ² and Otolaryngology ³ , Stanford University
45	Modeling Chronic Chagasic Cardiomyopathy Disease Mechanism Using Human iPS Cells	Adriana Bozzi ¹ , Elena Matsa ¹ , Wenyi Chen ¹ , Evgenios Neofytou ¹ , Ningyi Shao ¹ , Marife Martinez ² , Juliana A. S. Gomes ³ , Karl V. Clemons ² , David A. Stevens ² , Rodrigo Correa- Oliveira ⁴ , Joseph C. Wu ¹ Stanford Cardiovascular Institute ¹ ; California Institute for Medical Research ² ; Department of Morphology ³ , Federal University of Minas Gerais, Brazil; René Rachou Research Center- Oswaldo Cruz Foundation ⁴ , Brazil
46	Conformal Wireless Interfaces for Neuromodulation	Andrew Ma ¹ , Yuji Tanabe ¹ , Stephanie Hsu ¹ , Ada Poon ¹ Department of Electrical Engineering ¹ , Stanford University
47	Pancancer Module Analysis Captures Major Oncogenic Pathways and Identifies Master Regulator of Immune Response	Magali Champion ^{1,2} , Olivier Gevaert ^{1,2} Stanford Center for Biomedical Informatics Research ¹ and Department of Medicine ² , Stanford University
48	Bioinspired Sensors for Prosthetic Skin	Alex Chortos ¹ , Benjamin CK. Tee ² , Andre Berndt ³ , Amanda Kim Nguyen ² , Karl Deisseroth ³ , Tse Nga Ng ⁴ , Zhenan Bao ⁵ Department of Materials Science & Engineering ¹ , Electrical Engineering ² , Bioengineering ³ , and Chemical Engineering ⁵ , Stanford University; Palo Alto Research Center ⁴
49	Orientation-Sensitive Microscopy of Axonal Cargoes Demonstrates Molecular Motor-Dependent Rotational Dynamics	Luke Kaplan ¹ , Praveen Chowdary ² , Bianxiao Cui ² Biophysics Program ¹ and Department of Chemistry ² , Stanford University
50	Accelerated Biodegradation of Plastic Wastes by Mealworms (the Larvae of <i>Tenebrio molitor</i>)	Wei-Min Wu ¹ , Shanshan Yang ¹ , Anja M. Brandon ¹ , Yu Yang ² , Zhiyue Wang ¹ , Jun Yang ² , Craig S. Criddle ¹ Department of Civil & Environmental Engineering ¹ , Stanford University; School of

		Chemistry and Environment ² , Beihang University, China
51	YAP Involvement in Mechanotransduction During Stiffness-Induced Cancer Cell Invasion	Joanna Y. Lee ¹ , Jessica Chang ² , Sungmin Nam ¹ , Ovijit Chaudhuri ¹ Departments of Mechanical Engineering ¹ and Genetics ² , Stanford University
52	Returning to Normalcy: The Superficial White Matter in Anti-NMDA Receptor Encephalitis	Owen Phillips ^{1,2} , Shantanu H. Joshi ^{4,5} , Katherine L. Narr ^{4,5} , David W. Shattuck ^{4,5} , Manpreet Singh ¹ , Alexander Onopa ¹ , Christoph Ploner ⁶ , Harald Pruess ⁶ , Friedemann Paul ⁶ , Margherita Di Paola ^{2,3} , Carsten Finke ^{6,7} Department of Psychiatry (Division of Child and Adolescent Psychiatry) ¹ , Stanford University; Clinical & Behavioral Neurology Department ² , IRCCS Santa Lucia Foundation, Rome, Italy; Human Studies Department ³ , LUMSA University, Rome, Italy; Ahmanson Lovelace Brain Mapping Center ⁴ and Department of Neurology ⁵ , University of California, Los Angeles; Department of Neurology ⁶ , Charité – Universitätsmedizin Berlin, Germany; Berlin School of Mind & Brain ⁷ , Humboldt-Universitaet zu Berlin, Germany
53	Elucidation of the Murine Intestinal MHCII Peptidome Using Mass Spectrometry	Carlos Gonzalez ¹ , Samhita Rao ¹ , Andrew Hryckowian ² , Steven Higginbottom ² , Justin Sonnenburg ² , Josh Elias ¹ Departments of Chemical & Systems Biology ¹ and Microbiology & Immunology ² , Stanford University
54	Separating Enantiomers with Light	Yang Zhao ¹ , Amr Saleh ¹ , Ci-Sing Ho ² , Mark Lawrence ¹ , Jennifer Dionne ¹ Departments of Materials Science & Engineering ¹ and Applied Physics ² , Stanford University
55	Assessment of Anesthetic Binding Sites within the GABAa Receptor	Victoria S. Fahrenbach ¹ , James R. Trudell ¹ , Edward J. Bertaccini ^{1,2} Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University; Department of Veterans Affairs ² , VA Palo Alto Health Care System
56	Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints	Maude M. David ¹ , David Enard ² , Alp Ozturk ¹ , Jae-Yoon Jung ¹ , Leticia Diaz-Beltran ¹ , Dennis. P. Wall ^{1*} (*corresponding author) Departments of Pediatrics (Division of Systems Medicine) ¹ and Biology ² , Stanford University
57	Impact of the Gut Microbiota on the Autism Phenotype	Maude M. David ¹ , Jack Gilbert ² , Jena Daniels ¹ , Dennis P. Wall ¹ Department of Systems Medicine ¹ , Stanford University; Argonne National Laboratory ² , Lemont, IL
58	VCAM1 Is a Mediator of Brain Inflammation and Decreased Neurogenesis Caused by an Aged Systemic Milieu	 Hanadie Yousef¹, Cathrin Czupalla², Ashley Burke¹, Judith Zandstra¹, Eugene Butcher^{2,3}, Tony Wyss-Coray^{1,3} Departments of Neurology & Neurological Sciences¹ and Pathology², Stanford University; VA Palo Alto Health Care System³
59	ATP-Releasing Nucleotides: Linking DNA Synthesis to Luciferase Signaling	Debin Ji ¹ , Michael G. Mohsen ¹ , Emily M. Harcourt ¹ , Eric T. Kool ¹ Department of Chemistry ¹ , Stanford University
60	Biocompatible Viscoelastic Hyaluronic Acid Hydrogels Based on Dynamic Hydrazone Bonds	Junzhe Lou ² , Ryan Stowers ³ , Ovijit Chaudhuri ³ , Yan Xia ¹ Departments of Chemistry ¹ , Materials Science & Engineering ² , and Mechanical Engineering ³ , Stanford University

	Sorting of Induced Pluripotent Stem Cell-Derived Cardiomyocytes by	Li-Chun Lin ^{1,4} , Mahdokht Masaeli ^{1,2} , Alexandre J. S. Ribeiro ¹ , Euan A. Ashley ² , Beth Pruitt ^{1,3} Departments of Mechanical Engineering ¹ ,
61	Size for Multifunctional Analysis	Cardiovascular Medicine ² , and Molecular & Cellular Physiology, Stanford University; Department of Biomedical Engineering ⁴ , National
62	Chaos Analysis Provides a More Sensitive and Accurate Measure for Loss of Consciousness Compared to Frequency Domain Measures of	Cheng Kung University, Taiwan Divya Chander ¹ , Melis K. Sunay ¹ , Christina R. Dunn ¹ , M. Bruce MacIver ¹
63	EEG Signals Differential Synaptic Actions of Isoflurane on Hippocampal and Cortical Connections	Department of Anesthesia ¹ , Stanford University Brian H. Bland ¹ , Robert A. Pearce ² , M. Bruce MacIver ³ Department of Psychology ¹ , University of Calgary; Department of Anesthesiology ² , University of Wisconsin-Madison; Department of
64	2D to 3D Localization of Mouse Brain Histological Sections within Reference Brain via Similarity and Spatial Optimization	Anesthesia ³ , Stanford University Jing Xiong ¹ , Brady Weissbourd ² , Katherine DeLoach ² , Liqun Luo ² , Mark Horowitz ¹ Departments of Electrical Engineering ¹ and Biology ² , Stanford University
65	Engineering Bioinks for 3D Bioprinting iPSC-derived Cardiomyocytes	Caressa Chen ^{1,2,3} , Vahid Serpooshan ^{1,2} , Sneha Venkatraman ^{1,2} , Huiyuan Wang ⁴ , Sarah Heilshorn ⁴ , Pu Chen ⁵ , Utkan Demirci ⁵ , Joseph Wu ^{1,2,3,5} , Sean Wu ^{1,2} Stanford Cardiovascular Institute ¹ ; Departments of Medicine (Division of Cardiology) ² , Materials Science & Engineering ⁴ , and Radiology ⁵ and Institute for Stem Cell Biology & Regenerative Medicine ³ , Stanford University
66	Patient-Specific Computational Modeling of Intraventricular Hemodynamics in Single Ventricle Physiology	Vijay Vedula ¹ , Jeffrey A. Feinstein ^{1,2} , Alison L. Marsden ^{1,2} Departments of Pediatrics ¹ and Bioengineering ² , Stanford University
67	Developing Novel Therapeutic Agents to Overcome Drug Resistance in Ovarian and Triple Negative Breast Cancers	Vineet Kumar ¹ , Ramasamy Paulmuruguan ² , Sanjay V. Malhotra ¹ Departments of Radiation Oncology ¹ and Radiology ² , Stanford University
68	Significance of the Double-Layer Capacitor Effect in Solution- Processable Polymeric Dielectrics and Exceptionally Stable Low-Voltage Organic Transistors	Raphael Pfattner ¹ , Chao Wang ¹ , Wen-Ya Lee ² , Desheng Kong ¹ , Celine Liong ¹ , Zhenan Bao ¹ Department of Chemical Engineering ¹ , Stanford University; Department of Chemical Engineering & Biotechnology ² , National Taipei University of Technology, Taipei, Taiwan
69	Detection of the Spontaneous Action Potentials of HEK293 Cells by Prussian Blue Thin Films	Felix Alfonso ¹ , Allister McGuire ¹ , Thomas Li ¹ , Francesca Santoro ¹ , Luke Kaplan ¹ , Bianxiao Cui ¹ Department of Chemistry ¹ , Stanford University
70	A Hardware-Accelerated Programming System for Sequence Alignment	Yatish Turakhia ¹ , Albert Ng ¹ , Gill Bejerano ^{2,3,4} , William Dally ^{1,2} Departments of Electrical Engineering ¹ , Computer Science ² , Developmental Biology ³ , and Pediatrics ⁴ , Stanford University
71	TNFa Priming Enhances CD4+FoxP3+ Regulatory T Cell Suppressive Function in GvHD Prevention and Treatment	Antonio Pierini ¹ , William A. Strober ¹ , Caitlin Moffett ¹ , Jeanette Baker ¹ , Hidekazu Nishikii ¹ , Yuqiong Pan ¹ , Maite Alvarez ¹ , Dominik Schneidawind ¹ , Everett Meyer ¹ , Robert Negrin ¹ Department of Medicine (Division of Blood & Marrow Transplantation) ¹ , Stanford University Seyedmeghdad Taghavigarmestani ^{1,2} , Hossein
72	Protein Corona Improves Stem Cell Labeling and Detection with MRI	Nejadnik ^{1,2} , Philip Yang ³ , Morteza Mahmoudi ³ , Heike E. Daldrup-Link ^{1,2} Departments of Radiology ¹ and Medicine (Division of Cardiovascular Medicine) ³ and Molecular Imaging Program at Stanford (MIPS) ² , Stanford University

73	A Chameleon-Inspired Stretchable Electronic Skin with Interactive Color-Changing Controlled by Tactile Sensing	 Ho-Hsiu Chou¹, Amanda Kim Nguyen², Alex Chortos³, John To¹, Chien Lu¹, Jianquo Mei¹, Tadanori Kurosawa¹, Won-Gyu Bae¹, Jeffrey BH. Tok¹, Zhenan Bao^{1,3*} (*corresponding author) Departments of Chemical Engineering¹, Electrical Engineering2, and Materials Science & Engineering³, Stanford University
74	SIM Super-Resolution Images Provide Evidence that CNS Myelin Wrapping Is Driven by Actin Disassembly	J. Bradley Zuchero ¹ , Adiljan Ibrahim ¹ , Andrew Olson ² , Ben Barres ¹ Department of Neurobiology ¹ and Neuroscience Microscopy Service ² , Stanford University
75	A Proteomic-Genomic Investigation of MHC Peptide Ligands	 Niclas Olsson¹, Michael Khodadoust², Keith Rawson¹, Qui Phung³, Veronica Aniana³, Samhita Rao¹, Lichao Zhang¹, Lisa Wager⁴, Kavya Swaminathan¹, Michael Green², Jennie Lill³, Mark Davis⁴, Ron Levy², Ash Alizadeh², Joshua E. Elias¹ Departments of Chemical & Systems Biology¹, Medicine (Division of Oncology)², and Microbiology & Immunology⁴, Stanford University; Genentech, Inc.³, South San Francisco
76	Generation of EEG Oscillations in Neocortical Brain Slices	 Beza A. Dagne¹, Stephen W. Evans¹, Noelie S.J. Cayla¹, M. Bruce MacIver¹ Department of Anesthesiology, Perioperative & Pain Medicine¹, Stanford University
77	Magnetic Levitation Cell Sorter for CTC/CTM Isolation from Cancer Patient Blood	Jaeyoung Yang ^{1,5} , Naside G. Durmus ^{2,6} , Hojae Lee ^{1,5} , Baris D. Ercal ^{1,5} , Huiping Zhang ¹ , Christian Hoerner ⁴ , Alice C. Fan ⁴ , Juergen K. Willmann ^{1,5} , Ronald W. Davis ^{2,3,6} , Lars Steinmetz ^{3,6} , Utkan Demirci ^{1,5} Departments of Radiology ¹ , Biochemistry ² , Genetics ³ , and Medicine (Division of Oncology) ⁴ , Canary Center for Cancer Early Detection ⁵ , and Stanford Genome Technology Center ⁶ , Stanford University
78	Exosome-Total-Isolation-Chip (ExoTIC) Device for Identification of Exosome-Based Biomarkers	Fei Liu ^{1,2} , Ophir Vermesh ² , Thomas Nieland ^{1,2} , Jessie Ge ² , Viswam S. Nair ³ , Sanjiv Sam Gambhir ^{1,2} , Utkan Demirci ^{1,2} Canary Center at Stanford for Cancer Early Detection ¹ and Departments of Radiology ² and Medicine ³ , Stanford University
79	Chondrocytes Derived from Human Induced Pluripotent Stem Cells (hiPSCs) Are Resistant to Proinflammatory Cytokines as Compared to Adult Chondrocytes	Jieun Lee ¹ , Piera Smeriglio ¹ , William J. Maloney ¹ , Nidhi Bhutani ¹ Department of Orthopaedic Surgery ¹ , Stanford University
80	Optical BioSensor for Detecting Markers of Traumatic Brain Injury	 Fariah Mahzabeen¹, Jelena Levi^{2,4}, James L. Zehnder³, Sanjiv S. Gambhir^{2,4}, James S. Harris¹ Departments of Electrical Engineering¹, Radiology², and Hematology³ and Canary Center for Cancer Early Detection⁴, Stanford University
81	Towards Elucidating Protein-Protein Relationships: Using Targeted Single Cell Mass-Spectrometry to Analyze Endogenous Protein Covariance	Kyle Kovary ¹ , Michael Zhao ¹ , Mary Teruel ¹ Department of Chemical & Systems Biology ¹ , Stanford University
82	Learning Both Weights and Connections for Efficient Neural Networks	Song Han ¹ , Jeff Pool ² , John Tran ² , William J. Dally ^{1,2} Department of Electrical Engineering ¹ , Stanford University; NVIDIA ²
83	Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding	Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical
84	A Comparison of Fluid-Structure Interaction Modalities in Multiscale Coronary Simulations	Engineering ² , Tsinghua University; NVIDIA ³ Justin S. Tran ¹ , Vijay V. Vedula ^{2,3,4} , Abhay B. Ramachandra ^{2,3,4} , Alison L. Marsden ^{2,3,4}

		Departments of Mechanical Engineering ¹ , Bioengineering ² , and Pediatrics ⁴ and Institute for Computational & Mathematical Engineering ³ , Stanford University
85	A Steroid Impact on Sonic Hedgehog Signaling	Navdar Sever ^{1,2,3,4} , Randall K. Mann ^{1,2,3,4} , Libin Xu ⁵ , William J. Snell ⁶ , Carmen I. Hernandez- Lara ⁶ , Ned A. Porter ⁵ , Philip A. Beachy ^{1,2,3,4} Institute for Stem Cell & Regenerative Medicine ¹ , Departments of Biochemistry ² and Developmental Biology ³ , and Howard Hughes Medical Institute ⁴ , Stanford University; Department of Chemistry ⁵ , Vanderbilt University; Department of Cell Biology ⁶ , University of Texas Southwestern Medical School
86	Single-Cell RNAseq Reveals Multiple Novel Subtypes of Striatal Neurons	Geoff Stanley ¹ , Ozgun Gokce ² , Thomas C. Südhof ⁴ , Stephen R. Quake ^{3,4} Biophysics Program ¹ , Howard Hughes Medical Institute ⁴ , and Departments of Molecular & Cellular Physiology ² and Bioengineering ³ , Stanford University
87	Vertical Nanopillars for In Situ Probes of Nuclear Mechanotransduction	Hsin-Ya Lou ¹ , Lindsey Hanson ¹ , Wenting Zhao ² , Yi Cui ^{2,3} , Bianxiao Cui ^{1*} (*corresponding author) Departments of Chemistry ¹ and Materials Science & Engineering ² , Stanford University; and Stanford Institute for Materials & Energy Sciences ³ , SLAC National Accelerator Laboratory
88	PolyQ Flanking Regions of Huntingtin Impact Toxicity and Protein Homeostasis by Directing Huntingtin Aggregation Kinetics, Conformation, and Stability	Koning Shen ¹ , Jonathan Fauerbach ¹ , Barbara Calamini ² , Boxue Ma ³ , Wah Chiu ³ , Donald Lo ² , Judith Frydman ¹ Department of Biology ¹ , Stanford University; Department of Neurobiology ² , Duke University; Department of Biochemistry & Molecular Biology ³ , Baylor College of Medicine, Houston, Texas
89	Rapid Point-of-Card Detection of Mycobacterium tuberculosis	Yunfeng (Jerry) Cheng ^{1,2,3} , Jinghang Xie ^{1,2,3} , Jianghong Rao ^{1,2,3} * (*corresponding author) Molecular Imaging Program at Stanford (MIPS) ¹ and Departments of Radiology ² and Chemistry ³ , Stanford University
90	Absence of Bistability in Rb Hyperphosphorylation During Cell-Cycle Entry	Mingyu Chung ¹ , Chad Liu ¹ , Hee Won Yang ¹ , Ariel Jaimovich ¹ , Tobias Meyer ¹ Department of Chemical & Systems Biology ¹ , Stanford University
91	Ultra-high Field Magnetic Resonance Imaging of Magnetic Susceptibility in Cortical Lesions of Multiple Sclerosis	Wei Bian ¹ , Eric Tranvinh ¹ , May Han ² , Brian Rutt ¹ , Michael M. Zeineh ¹ Departments of Radiology ¹ and Neurology ² , Stanford University
92	SHG Microendoscopy Reveals Slowing of Motor Units with ALS in SOD1G93A Mice	Xuefeng Chen ¹ , Mark Schnitzer ^{2,3,4} , Scott Delp ^{1,5} Departments of Mechanical Engineering ¹ , Biology ² , Applied Physics ³ , and Bioengineering ⁵ and Howard Hughes Medical Institute ⁴ , Stanford University
93	Steerable Ablation Probes for Percutaneous Treatment of Tumors in the Liver	Joseph D. Greer ¹ , Troy K. Adebar ¹ , Gloria L. Hwang ¹ , Allison M. Okamura ¹ Departments of Mechanical Engineering ¹ and Radiology ² , Stanford University Tsung Yuan Wu ¹ Stefan Tholen ² Allicon
94	Building a Multi-Well Format, Open-Source Oscillating Fluid Exchange System for Cell-Based Assays	Tsung-Yuan Wu ¹ , Stefan Tholen ² , Allison Okamura ¹ , Mary N. Teruel ² Departments of Mechanical Engineering ¹ and Chemical & Systems Biology ² , Stanford University

95	Human Induced Pluripotent Stem Cell-derived Cardiomyocytes Reveals Hypokalemia-Induced Exacerbation of Ventricular Arrhythmogenicity of Anti-Arrhythmic Drugs	Praveen Shukla ^{1,2,3} , Elena Matsa ^{1,2,3} , Priyanka Garg ^{1,2,3} , Wenyi Chen ^{1,2,3} , Arun Sharma ^{1,2,3} , Oscar J. Abilez ^{1,2,3} , Joseph D. Gold ^{1,5} , Joseph C. Wu ^{1,2,3} * (*corresponding author) Stanford Cardiovascular Institute ¹ , Institute for Stem Cell Biology & Regenerative Medicine ² , Departments of Medicine (Division of Cardiology) ³ , Chemistry ⁴ , and Cardiothoracic Surgery ⁵ , Stanford University
96	Blockade of the Neogenin-RGMb-BMP Signaling Hub Inhibits Allergen- Induced Airway Hyperreactivity	Sanhong Yu ^{1,2,3,4} , Krystle M. Leung ^{1,2} , Hye- Young Kim ^{1,2,5} , Yanping Xiao ^{3,4} , Lee A. Albacker ^{1,2,6} , Dale T. Umetsu ^{1,2,7} , Gordon J. Freeman ^{3,4} , Rosemarie DeKruyff ^{1,2,8} Division of Immunology ¹ , Children's Hospital Boston; Departments of Pediatrics ² and Medicine ⁴ , Harvard Medical School; Department of Medical Oncology ³ , Dana-Farber Cancer Institute, Boston; Department of Biomedical Sciences ⁵ , Seoul National University College of Medicine, Korea; (present address) Foundation Medicine, Inc. ⁶ , Cambridge, MA; (present address) Genentech, Inc. ⁷ , South San Francisco; (present address) Department of Medicine ⁸ , Stanford University
97	Strain-Sensitive Upconverting Nanoparticles for Imaging Forces in Biology	Alice Lay ¹ , Michael Wisser ² , Yu Lin ³ , Tarun Narayan ² , Michael Krieg ⁴ , Ashwin Atre ² , Miriam Goodman ⁴ , Jennifer Dionne ² Departments of Applied Physics ¹ , Materials Science & Engineering ² , Geological & Environmental Sciences ³ , and Molecular & Cellular Physiology ⁴ , Stanford University
98	TET-Mediated Stable 5hmC Deposition, but Not TDG Function, Is Required for Chondrogenic Differentiation	Fiorella Grandi ¹ , Sarah E. B. Taylor ¹ , Ye Henry Li ² , Piera Smeriglio ¹ , Wing H. Wong ³ , Nidhi Bhutani ¹ Departments of Orthopaedic Surgery ¹ , Structural Biology ² , and Statistics ³ , Stanford University
99	Development of a Novel Platform for Derivation of Single Cell Adipocytes from Human Induced Pluripotent Stem Cells (hiPSCs)	Mohammad Shahbazi ¹ , Philip Lee ¹ , Paige Cundiff ² , Fahim Abbasi ¹ , Sunita D'Souza ² , Ihor Lemischka ² , Thomas Quertermous ¹ , Joshua W. Knowles ¹ Stanford Cardiovascular Institute ¹ , Stanford University; Department of Developmental & Regenerative Biology ² , Icahn School of Medicine at Mount Sinai, New York
100	Capsule Endoscopic Ultrasound Device	Farah Memon ¹ , Gerard Touma ¹ , Junyi Wang ¹ , Spyridon Baltsavias ¹ , Morten Rasmussen ¹ , Chienliu Chang ¹ , Eric W. Olcott ¹ , R. Brooke Jeffrey ¹ , Amin Arbabian ¹ , Butrus (Pierre) T. Khuri-Yakub ¹ Department of Electrical Engineering ¹ , Stanford University
101	Enantioselective Photolysis of Chiral Molecules Using Resonant Dielectric Nanoparticles	Chi-Sing Ho ¹ , Yang Zhao ² , Aitzol Garcia ³ , Jennifer Dionne ² Departments of Applied Physics ¹ and Materials Science & Engineering ² , Stanford University; Donostia International Physics Center ³ , Donostia, Spain
102	Microfluidic Worm Dispenser	Florian Bienefelt ^{1,4} , Frédéric Loizeau ¹ , Eileen Mazzochette ² , Sylvia Fechner ³ , Jürgen Brugger ⁴ , Miriam B. Goodman ^{1,3} , Beth L. Pruitt ^{1,3} Departments of Mechanical Engineering ¹ , Electrical Engineering ² , and Molecular & Cellular Physiology ³ , Stanford University; École

		Polytechnique Fédérale de Lausanne ⁴ , Switzerland
103	A Stretchable Live Cell Platform to Probe Gut Mechanobiology	Joan Teixidor ^{1,4} , Jens Moeller ³ , Bryon Foys ² , Chase Wood ² , Lucy Erin O'Brien ² , Beth Pruitt ^{1,2} Departments of Mechanical Engineering ¹ , and Molecular & Cellular Physiology ² , Stanford University; Department of Health Science & Technology ³ , ETH Zürich; Department of Microengineering ⁴ , École Polytechnique Fédérale de Lausanne ⁴ , Switzerland
104	Transcription Factor Dynamics Identify a Circadian Code for Fat Cell Differentiation	Zahra Bahrami-Nejad ¹ *, Michael L. Zhao ¹ *, Sabine van Schie ¹ , Mingyu Chung ¹ , Mary N. Teruel ¹ (*equal contribution) Department of Chemical & Systems Biology ¹ , Stanford University
105	Social Status of Robots: Supporting Design of Human-Robot Relationships with Exploratory Assessment	Jamy Li ^{1,2} , Wendy Ju ¹ (collaborations with Rene Kizilcec ² , Jeremy Bailenson ² , Byron Reeves ²) Center for Design Research ¹ and Department of Communication ² , Stanford University
106	Gene Expression Meta Analysis to Create a Quantitative Measure of Field Change in Smoker Airway Epithelium: Towards More Precise Risk Estimates of Tobacco Attributable Disease	Evan Minty ^{1,2*} , Rohun Kshirsagar ^{3*} , Timothy Sweeney ^{2,3} , Francesco Vallania ³ , Winn Haynes ² , Hua Fan Minogue ³ , Kari Nadeau ³ , Purvesh Khatri ^{2,3} (*first authors) O'Brien Institute for Public Health ¹ , University of Calgary; Biomedical Informatics Training Program ² , Stanford University; Institute for Immunity, Transplantation, & Infection ³ , Stanford University