

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Program Symposium Poster Session

February 17, 2016

POSTER # TITLE AUTHORS

		Teresa Purzner ¹ , Steve Gygi ² , Josh Elias ³ , Matthew P. Scott ^{1,4} , Yoon-Jae Cho ^{5,6}
1	Developmental Phosphoproteomics Identifies CK2 as a Novel Therapeutic Target in Medulloblastoma	Departments of Developmental Biology ¹ , Systems Biology ³ , Neurology ⁵ , and Neurosurgery ⁶ , Stanford University; Department of Cell Biology ² , Harvard University; Carnegie Institute of Science ⁴
2	Engineering Emergent Multicellular Behavior Through Synthetic Adhesion Programs	David Glass ¹ , Ingmar Riedel-Kruse ¹ Department of Bioengineering ¹ , Stanford University
3	Engineering Patterned Biofilms for Microbial Consortia	Xiaofan Jin ¹ , Ingmar Riedel-Kruse ¹ Department of Bioengineering ¹ , Stanford University
4	Targeted Delivery of siRNA using Knottin-Protein Conjugates for Glioblastoma	Sungwon Lim ¹ , Sandra M. DePorter ¹ , Camila Kofman ² , Jennifer R. Cochran ^{1,2} Departments of Bioengineering ¹ and Chemical Engineering ² , Stanford University
5	Frequency-Selective Control of Cortical and Subcortical Networks by Central Thalamus	Jia Liu ¹ , Hyun Joo Lee ¹ , Andrew Weitz ² , Zhongnan Fang ¹ , Peter Lin ¹ , ManKin Choy ¹ , Robert Fisher ¹ , Vadim Pinskiy ³ , Alexander Tolpygo ³ , Partha Mitra ³ , Nicholas Schiff ⁴ , Jin Hyung Lee ^{1,2} Departments of Neurology & Neurological Sciences ¹ and Bioengineering ² , Stanford University; Cold Spring Harbor Laboratory ³ ; Department of Neurology ⁴ , Weill Cornell Medical College
6	Improved Phylogenetic Ordinations for Microbiome Data	Julia Fukuyama ¹ , Susan Holmes ¹ Department of Statistics ¹ , Stanford University
7	3D Nanoelectrodes for Electrophysiology: How Size Affects Seal Resistance	Allister McGuire ¹ , Francesca Santoro ¹ , Ziliang Carter Lin ² , Yi Cui ³ , Bianxiao Cui ¹ Departments of Chemistry ¹ , Applied Physics ² , and Materials Science & Engineering ³ , Stanford University
8	Deep Learning Models of the Retinal Response to Natural Scenes	Lane McIntosh ^{1*} , Niru Maheswaranathan ^{1*} , Aran Nayebi ² , Surya Ganguli ³ , Stephen A. Baccus ⁴ (*equal contribution) Neuroscience Program ¹ and Departments of Computer Science ² , Applied Physics ³ , and Neurobiology ⁴ , Stanford University
9	Enhancer-Promoter Contact Dynamics in Stem Cell Differentiation	Brook Barajas ¹ , Adam Rubin ¹ , Mayra Furlan-Magaril ² , Imani Howard ¹ , Daniel Kim ¹ , Max Mumbach ¹ , Howard Chang ¹ , Peter Fraser ² , Paul Khavari ¹ Department of Epithelial Biology ¹ , Stanford University; Program in Nuclear Dynamics ² , Babraham Institute
10	Learning Causal Disease Variants and Transcription Factor Binding Through Deep Learning Sequence-to-Chromatin Accessibility Models	Peyton Greenside ¹ , Avanti Shrikumar ² , Jason Buenrostro ³ , Ryan Corces ⁴ , Ravi Majeti ⁵ , Howard Chang ⁴ , Will Greenleaf ³ , Anshul Kundaje ^{2,3} Biomedical Informatics Training Program ¹ , Departments of Computer Science ² , Genetics ³ , and Medicine (Division of Hematology) ⁵ , and Center for Personal Dynamic Regulomes ⁴ , Stanford University

11	Elucidating the Mechanisms Underpinning the Promotion of Plant Iron Acquisition by Root Microbiota	Mathias J.E.E.E. Voges ^{1,2} , Yang Bai ³ , Ruben G. Oter ³ , Haruhiko Inoue ³ , Paul Schulze-Lefert ³ , Elizabeth S. Sattely ² Departments of Bioengineering ¹ and Chemical Engineering ² , Stanford University; Department of Plant Microbe Interactions ³ , Max Planck Institute for Plant Breeding Research, Germany
12	Physical Modeling of Chromosome Dynamics Reveals Influence of Stress Communication between Connected Loci	Thomas J. Lampo ¹ , Andrew S. Kennard ² , Andrew J. Spakowitz ^{1,2} Department of Chemical Engineering ¹ and Biophysics Program ² , Stanford University
13	Collective Ciliary Dynamics Govern Complex Locomotive Behavior in a Simple Animal - A Multi-Scale Approach	Matthew Bull ¹ , Manu Prakash ² Departments of Applied Physics ¹ and Bioengineering ² , Stanford University
14	Biophysics of Swimming and Host-Seeking in <i>Schistosoma mansoni</i> cercariae	Deepak Krishnamurthy ¹ , Georgios Katsikis ¹ , Arjun Bhargava ² , Manu Prakash ³ Departments of Mechanical Engineering ¹ , Applied Physics ² , and Bioengineering ³ , Stanford University
15	A Novel Split Firefly Luciferase Complementation Strategy for Interrogating the Regulation of SNAP29 Homodimerization in Starvation-Induced Autophagy	Ian Y. Chen ¹ , Thillai Veerapazham ² , Eric Marceau ³ , Jon Stack ³ , Chun Liu ³ , Nazish Sayed ³ , Elena Matsa ³ , Ramasamy Paulmurugan ² , Joseph C. Wu ^{1,2,3} Departments of Medicine (Division of Cardiovascular Medicine) ¹ and Radiology ² , and Stanford Cardiovascular Institute ³ , Stanford University
16	Cell-Based Tissue Engineering Treatment Restores Active and Passive Tension Properties in Mouse Model of Volumetric Muscle Loss	Melinda Cromie ^{1,2,3} , Marco Quarta ^{2,3} , Justin Blonigan ³ , Robert Chacon ³ , Thomas Rando ^{2,3} Departments of Mechanical Engineering ¹ and Neurology ² , Stanford University; Center for Tissue Regeneration ³ , VA Palo Alto Health Care System
17	Investigating Folding and Catalysis of the glmS Ribozyme Riboswitch at the Single-Molecule Level	Andrew Savinov ¹ , Steven M. Block ^{2,3} Biophysics Program ¹ and Departments of Applied Physics ² and Biology ³ , Stanford University
18	Data-Driven Structural Priors for Shape Completion	Minhyuk Sung ¹ , Vladimir G. Kim ^{1,2} , Roland Angst ^{1,3} , Leonidas Guibas ¹ Department of Computer Science ¹ , Stanford University; Adobe Research ² ; Max Planck Institute for Informatics ³
19	Small Cell Number ChIP-seq to Probe Epigenetic Regulation in Stem Cells	Elizabeth Chen ¹ , Mark Zarnegar ¹ , Michael Clarke ¹ Department of Stem Cell Biology & Regenerative Medicine ¹ , Stanford University
20	Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model View	Hao Su ¹ , Charles R. Qi ² , Yangyan Li ¹ , Leonidas J. Guibas ¹ Departments of Computer Science ¹ and Electrical Engineering ² , Stanford University
21	3D-Assisted Feature Synthesis for Novel Views of an Object	Hao Su ¹ , Fan Wang ² , Eric Yi ² , Leonidas Guibas ¹ Departments of Computer Science ¹ and Electrical Engineering ² , Stanford University
22	Insights into Mutational Biases from Deep Sequencing of Natural and Laboratory Populations of <i>Drosophila melanogaster</i>	Zoe June Assaf ^{1,2} , Dmitri A. Petrov ² Departments of Genetics ¹ and Biology ² , Stanford University
23	Microribbon-Based Hydrogels Induced Mesenchymal Stem Cells to Undergo Endochondral Ossification <i>In Vivo</i>	Bogdan Conrad ¹ , Li-Hsin Han ² , Fan Yang ^{2,3} Departments of Stem Cell Biology & Regenerative Medicine ¹ , Orthopaedic Surgery ² , and Bioengineering ³ , Stanford University
24	The Coding of Cutaneous Temperature in the Spinal Cord	Chen Ran ¹ , Mark A. Hoon ² , Xiaoke Chen ¹ Department of Biology ¹ , Stanford University; Molecular Genetics Unit, Laboratory of Sensory Biology ² , National Institute of Dental &

		Craniofacial Research–National Institutes of Health
25	Auto-Calibrating Wave-CS for Motion-Robust Accelerated MRI	Feiyu Chen ¹ , Tao Zhang ^{1,2} , Joseph Y. Cheng ^{1,2} , John M. Pauly ¹ , Shreyas S. Vasanawala ² Departments of Electrical Engineering ¹ and Radiology ² , Stanford University
26	Bilateral Assessment of Cartilage with UTE T2* Quantitative MRI and Relationships with Walking Mechanics Two Years after Anterior Cruciate Ligament Reconstruction	Matthew R. Titchenal ^{1,2,3} , Ashley A. Williams ^{2,3} , Eric F. Chehab ^{1,3,4} , Jessica L. Asay ^{1,3} , Jason L. Dragoo ^{2,3} , Garry E. Gold ^{2,4,5} , Timothy McAdams ² , Thomas P. Andriacchi ^{1,2,3} , Constance R. Chu ^{2,3} Departments of Mechanical Engineering ¹ , Orthopaedic Surgery ² , Bioengineering ⁴ , and Radiology ⁵ , Stanford University; VA Palo Alto Health Care System ³
27	Regularized Inversion of Metallic Implant Susceptibility from B0 Field Maps	Xinwei Shi ^{1,2} , Daehyun Yoon ¹ , Kevin M. Koch ³ , Brian A. Hargreaves ^{1,2} Departments of Radiology ¹ and Electrical Engineering ² , Stanford University; Department of Radiology ³ , Medical College of Wisconsin
28	Dynamic Expression and Chromatin Changes During Embryonic Cortical Inhibitory Neuron Specification and Direct Conversion of Fibroblasts to Neurons	Cheen Euong Ang ¹ , Orly Wapinski ² , Howard Chang ² , Marius Wernig ¹ Institute for Stem Cell Biology & Regenerative Medicine ¹ and Program in Epithelial Biology ² , Stanford University
29	Effect of Matrix Stiffness on Human Pluripotent Stem Cells Is Dependent upon Biochemical Cues	Soah Lee ¹ , Xinming Tong ² , Fan Yang ^{2,3} Departments of Materials Science & Engineering ¹ , Orthopaedic Surgery ² , and Bioengineering ³ , Stanford University
30	Enhancing Adipose-Derived Stem Cell-Based Cartilage Regeneration Using Macroporous Microribbon Scaffolds	Heather Rogan ¹ , Krista Chew ¹ , Fan Yang ^{1,2} Departments of Bioengineering ¹ and Orthopaedic Surgery ² , Stanford University
31	Engineering of Cytochromes P450 from Plant Secondary Metabolism	Amy Calgaro ¹ , Gülbenk Anarat-Cappillino ¹ , Gert Kiss ² , Elizabeth Sattely ¹ Departments of Chemical Engineering ¹ and Chemistry ² , Stanford University
32	Optics Based Method for Ionizing Radiation Photon Detection in PET	Li Tao ¹ , Craig S. Levin ^{1,2,3,4} Departments of Electrical Engineering ¹ , Radiology ² , Physics ³ , and Bioengineering ⁴ , Stanford University
33	Elucidation of Podophyllotoxin Biosynthetic Genes	Warren Lau ¹ , Elizabeth S. Sattely ¹ Department of Chemical Engineering ¹ , Stanford University
34	Gene-Centric Discovery of Novel Secondary Metabolite Pathways in <i>Arabidopsis thaliana</i>	Jakub Rajniak ¹ , Elizabeth S. Sattely ¹ Department of Chemical Engineering ¹ , Stanford University
35	Assessment of Psychomotor Skills for Surgical Trainees	Pankaj Sharma ¹ , Sakti Srivastava ² Departments of Electrical Engineering ¹ and Surgery ² , Stanford University
36	Omics AnalySIs System for PRecision Oncology (OASISPRO): A Web- Based Omics Analysis Tool for Clinical Phenotype Prediction	Kun-Hsing Yu ^{1,2} , Michael Fitzpatrick ³ , Luke Pappas ³ , Jessica Kung ³ , Warren Chan ¹ , Michael Snyder ² Biomedical Informatics Program ¹ and Departments of Genetics ² and Computer Science ³ , Stanford University
37	Typicality Sharpens Category Representations in Object-Selective Cortex	Marius Cătălin Iordan ¹ , Michelle R. Greene ¹ , Diane M. Beck ² , Li Fei-Fei ¹ Department of Computer Science ¹ , Stanford University; Beckman Institute and Psychology Department ² , University of Illinois
38	3D Super-Resolution Fluorescence Microscopy with the Corkscrew Point Spread Function	Maurice Y. Lee ¹ , Matthew D. Lew ² , W. E. Moerner ³

		Biophysics Program ¹ and Department of Chemistry ³ , Stanford University; Department of Electrical & Systems Engineering ² , Washington University
39	Optogenetic Control of Molecular Motors and Organelle Distributions in Cells	Liting Duan ¹ *, Daphne Che ¹ *, Kai Zhang ¹ , Qunxiang Ong ¹ , Shunling Guo ¹ , Bianxiao Cui ¹ (*equal contribution) Department of Chemistry ¹ , Stanford University
40	The Dual Characteristics of Light-Induced Cryptochrome 2, Homooligomerization and Heterodimerization	Daphne Che ^{1*} , Liting Duan ^{1*} , Kai Zhang ¹ , Bianxiao Cui ¹ (*equal contribution) Department of Chemistry ¹ , Stanford University
41	Extracellular Matrix Malleability Regulates Breast Cancer Cell Invasion	Katrina Wisdom ¹ , David J. Mooney ² , Ovijit Chaudhuri ¹ Department of Mechanical Engineering ¹ , Stanford University; School of Engineering & Applied Sciences ² , Harvard University
42	Genetic Dissection of Hepatitis C Virus Host Factors through a Genome-Scale CRISPR Screen	Andreas S. Puschnik ¹ , Karim Majzoub ¹ , Susan M. Brewer ¹ , Miguel A. Mata ¹ , Peter Sarnow ¹ , Jan E. Carette ¹ Department of Microbiology & Immunology ¹ , Stanford University
43	Improved Detection of Targeted Microbubbles with Ultrasound Using a Coherence-Based Beamformer	Dongwoon Hyun ¹ , Lotfi Abou-Elkacem ² , Juergen K. Willmann ² , Jeremy J. Dahl ² Departments of Bioengineering ¹ and Radiology ² , Stanford University
44	DNA Methylation Subtyping of Head and Neck Squamous Cell Carcinoma Reveals Smoking as a Determinant of Disease Heterogeneity and Prognosis	Kevin Brennan ^{1,2} , Julie Koenig ¹ , John B. Sunwoo ³ , Olivier Gevaert ^{1,2} Stanford Center for Biomedical Informatics Research ¹ and Departments of Medicine ² and Otolaryngology ³ , Stanford University
45	Modeling Chronic Chagasic Cardiomyopathy Disease Mechanism Using Human iPS Cells	Adriana Bozzi ¹ , Elena Matsa ¹ , Wenyi Chen ¹ , Evgenios Neofytou ¹ , Ningyi Shao ¹ , Marife Martinez ² , Juliana A. S. Gomes ³ , Karl V. Clemons ² , David A. Stevens ² , Rodrigo Correa- Oliveira ⁴ , Joseph C. Wu ¹ Stanford Cardiovascular Institute ¹ ; California Institute for Medical Research ² ; Department of Morphology ³ , Federal University of Minas Gerais, Brazil; René Rachou Research Center- Oswaldo Cruz Foundation ⁴ , Brazil
46	Conformal Wireless Interfaces for Neuromodulation	Andrew Ma ¹ , Yuji Tanabe ¹ , Stephanie Hsu ¹ , Ada Poon ¹ Department of Electrical Engineering ¹ , Stanford University
47	Pancancer Module Analysis Captures Major Oncogenic Pathways and Identifies Master Regulator of Immune Response	Magali Champion ^{1,2} , Olivier Gevaert ^{1,2} Stanford Center for Biomedical Informatics Research ¹ and Department of Medicine ² , Stanford University
48	Bioinspired Sensors for Prosthetic Skin	Alex Chortos ¹ , Benjamin CK. Tee ² , Andre Berndt ³ , Amanda Kim Nguyen ² , Karl Deisseroth ³ , Tse Nga Ng ⁴ , Zhenan Bao ⁵ Department of Materials Science & Engineering ¹ , Electrical Engineering ² , Bioengineering ³ , and Chemical Engineering ⁵ , Stanford University; Palo Alto Research Center ⁴
49	Orientation-Sensitive Microscopy of Axonal Cargoes Demonstrates Molecular Motor-Dependent Rotational Dynamics	Luke Kaplan ¹ , Praveen Chowdary ² , Bianxiao Cui ² Biophysics Program ¹ and Department of Chemistry ² , Stanford University
50	Accelerated Biodegradation of Plastic Wastes by Mealworms (the Larvae of <i>Tenebrio molitor</i>)	Wei-Min Wu ¹ , Shanshan Yang ¹ , Anja M. Brandon ¹ , Yu Yang ² , Zhiyue Wang ¹ , Jun Yang ² , Craig S. Criddle ¹ Department of Civil & Environmental Engineering ¹ , Stanford University; School of

		Chemistry and Environment ² , Beihang University,
51	YAP Involvement in Mechanotransduction During Stiffness-Induced Cancer Cell Invasion	China Joanna Y. Lee ¹ , Jessica Chang ² , Sungmin Nam ¹ , Ovijit Chaudhuri ¹ Departments of Mechanical Engineering ¹ and Genetics ² , Stanford University
52	Returning to Normalcy: The Superficial White Matter in Anti-NMDA Receptor Encephalitis	Owen Phillips ^{1,2} , Shantanu H. Joshi ^{4,5} , Katherine L. Narr ^{4,5} , David W. Shattuck ^{4,5} , Manpreet Singh ¹ , Alexander Onopa ¹ , Christoph Ploner ⁶ , Harald Pruess ⁶ , Friedemann Paul ⁶ , Margherita Di Paola ^{2,3} , Carsten Finke ^{6,7} Department of Psychiatry (Division of Child and Adolescent Psychiatry) ¹ , Stanford University; Clinical & Behavioral Neurology Department ² , IRCCS Santa Lucia Foundation, Rome, Italy; Human Studies Department ³ , LUMSA University, Rome, Italy; Ahmanson Lovelace Brain Mapping Center ⁴ and Department of Neurology ⁵ , University of California, Los Angeles; Department of Neurology ⁶ , Charité – Universitätsmedizin Berlin, Germany; Berlin School of Mind & Brain ⁷ , Humboldt-Universitaet zu Berlin, Germany
53	Elucidation of the Murine Intestinal MHCII Peptidome Using Mass Spectrometry	Carlos Gonzalez ¹ , Samhita Rao ¹ , Andrew Hryckowian ² , Steven Higginbottom ² , Justin Sonnenburg ² , Josh Elias ¹ Departments of Chemical & Systems Biology ¹ and Microbiology & Immunology ² , Stanford University
54	Separating Enantiomers with Light	Yang Zhao ¹ , Amr Saleh ¹ , Ci-Sing Ho ² , Mark Lawrence ¹ , Jennifer Dionne ¹ Departments of Materials Science & Engineering ¹ and Applied Physics ² , Stanford University
55	Assessment of Anesthetic Binding Sites within the GABAa Receptor	Victoria S. Fahrenbach ¹ , James R. Trudell ¹ , Edward J. Bertaccini ^{1,2} Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University; Department of Veterans Affairs ² , VA Palo Alto Health Care System
56	Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints	Maude M. David ¹ , David Enard ² , Alp Ozturk ¹ , Jae-Yoon Jung ¹ , Leticia Diaz-Beltran ¹ , Dennis. P. Wall ^{1*} (*corresponding author) Departments of Pediatrics (Division of Systems Medicine) ¹ and Biology ² , Stanford University
57	Impact of the Gut Microbiota on the Autism Phenotype	Maude M. David ¹ , Jack Gilbert ² , Jena Daniels ¹ , Dennis P. Wall ¹ Department of Systems Medicine ¹ , Stanford University; Argonne National Laboratory ² , Lemont, IL
58	VCAM1 Is a Mediator of Brain Inflammation and Decreased Neurogenesis Caused by an Aged Systemic Milieu	Hanadie Yousef ¹ , Cathrin Czupalla ² , Ashley Burke ¹ , Judith Zandstra ¹ , Eugene Butcher ^{2,3} , Tony Wyss-Coray ^{1,3} Departments of Neurology & Neurological Sciences ¹ and Pathology ² , Stanford University; VA Palo Alto Health Care System ³
59	ATP-Releasing Nucleotides: Linking DNA Synthesis to Luciferase Signaling	Debin Ji ¹ , Michael G. Mohsen ¹ , Emily M. Harcourt ¹ , Eric T. Kool ¹ Department of Chemistry ¹ , Stanford University
60	Biocompatible Viscoelastic Hyaluronic Acid Hydrogels Based on Dynamic Hydrazone Bonds	Junzhe Lou ² , Ryan Stowers ³ , Ovijit Chaudhuri ³ , Yan Xia ¹ Departments of Chemistry ¹ , Materials Science & Engineering ² , and Mechanical Engineering ³ , Stanford University

61	Sorting of Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Size for Multifunctional Analysis	Li-Chun Lin ^{1,4} , Mahdokht Masaeli ^{1,2} , Alexandre J. S. Ribeiro ¹ , Euan A. Ashley ² , Beth Pruitt ^{1,3} Departments of Mechanical Engineering ¹ , Cardiovascular Medicine ² , and Molecular & Cellular Physiology, Stanford University; Department of Biomedical Engineering ⁴ , National Cheng Kung University, Taiwan
62	Chaos Analysis Provides a More Sensitive and Accurate Measure for Loss of Consciousness Compared to Frequency Domain Measures of EEG Signals	Divya Chander ¹ , Melis K. Sunay ¹ , Christina R. Dunn ¹ , M. Bruce MacIver ¹ Department of Anesthesia ¹ , Stanford University
63	Differential Synaptic Actions of Isoflurane on Hippocampal and Cortical Connections	Brian H. Bland ¹ , Robert A. Pearce ² , M. Bruce MacIver ³ Department of Psychology ¹ , University of Calgary; Department of Anesthesiology ² , University of Wisconsin-Madison; Department of Anesthesia ³ , Stanford University
64	2D to 3D Localization of Mouse Brain Histological Sections within Reference Brain via Similarity and Spatial Optimization	Jing Xiong ¹ , Brady Weissbourd ² , Katherine DeLoach ² , Liqun Luo ² , Mark Horowitz ¹ Departments of Electrical Engineering ¹ and Biology ² , Stanford University
65	Engineering Bioinks for 3D Bioprinting iPSC-derived Cardiomyocytes	Caressa Chen ^{1,2,3} , Vahid Serpooshan ^{1,2} , Sneha Venkatraman ^{1,2} , Huiyuan Wang ⁴ , Sarah Heilshorn ⁴ , Pu Chen ⁵ , Utkan Demirci ⁵ , Joseph Wu ^{1,2,3,5} , Sean Wu ^{1,2} Stanford Cardiovascular Institute ¹ ; Departments of Medicine (Division of Cardiology) ² , Materials Science & Engineering ⁴ , and Radiology ⁵ and Institute for Stem Cell Biology & Regenerative Medicine ³ , Stanford University
66	Patient-Specific Computational Modeling of Intraventricular Hemodynamics in Single Ventricle Physiology	Vijay Vedula ¹ , Jeffrey A. Feinstein ^{1,2} , Alison L. Marsden ^{1,2} Departments of Pediatrics ¹ and Bioengineering ² , Stanford University
67	Developing Novel Therapeutic Agents to Overcome Drug Resistance in Ovarian and Triple Negative Breast Cancers	Vineet Kumar ¹ , Ramasamy Paulmuruguan ² , Sanjay V. Malhotra ¹ Departments of Radiation Oncology ¹ and Radiology ² , Stanford University
68	Significance of the Double-Layer Capacitor Effect in Solution- Processable Polymeric Dielectrics and Exceptionally Stable Low-Voltage Organic Transistors	Raphael Pfattner ¹ , Chao Wang ¹ , Wen-Ya Lee ² , Desheng Kong ¹ , Celine Liong ¹ , Zhenan Bao ¹ Department of Chemical Engineering ¹ , Stanford University; Department of Chemical Engineering & Biotechnology ² , National Taipei University of Technology, Taipei, Taiwan
69	Detection of the Spontaneous Action Potentials of HEK293 Cells by Prussian Blue Thin Films	Felix Alfonso ¹ , Allister McGuire ¹ , Thomas Li ¹ , Francesca Santoro ¹ , Luke Kaplan ¹ , Bianxiao Cui ¹ Department of Chemistry ¹ , Stanford University
70	A Hardware-Accelerated Programming System for Sequence Alignment	Yatish Turakhia ¹ , Albert Ng ¹ , Gill Bejerano ^{2,3,4} , William Dally ^{1,2} Departments of Electrical Engineering ¹ , Computer Science ² , Developmental Biology ³ , and Pediatrics ⁴ , Stanford University
71	TNFa Priming Enhances CD4+FoxP3+ Regulatory T Cell Suppressive Function in GvHD Prevention and Treatment	Antonio Pierini ¹ , William A. Strober ¹ , Caitlin Moffett ¹ , Jeanette Baker ¹ , Hidekazu Nishikii ¹ , Yuqiong Pan ¹ , Maite Alvarez ¹ , Dominik Schneidawind ¹ , Everett Meyer ¹ , Robert Negrin ¹ Department of Medicine (Division of Blood & Marrow Transplantation) ¹ , Stanford University
72	Protein Corona Improves Stem Cell Labeling and Detection with MRI	Seyedmeghdad Taghavigarmestani ^{1,2} , Hossein Nejadnik ^{1,2} , Philip Yang ³ , Morteza Mahmoudi ³ , Heike E. Daldrup-Link ^{1,2} Departments of Radiology ¹ and Medicine (Division of Cardiovascular Medicine) ³ and Molecular Imaging Program at Stanford (MIPS) ² , Stanford University

A Chameleon-Inspired Stretchable Electronic Skin with Interactive Color-Changing Controlled by Tactile Seming A Chameleon-Inspired Stretchable Electronic Skin with Interactive Color-Changing Controlled by Tactile Seming SIM Super-Resolution Images Provide Evidence that CNS Myelin Wrapping Is Driven by Actin Deasternbly SIM Super-Resolution Images Provide Evidence that CNS Myelin Wrapping Is Driven by Actin Deasternbly The Company of the Color of the Co			
Microscopy Service, Stanford University Niclas Olsoan, Michael Khodadousé, Ketith Rawson ¹ , Qui Phung ² , Veronica Aniana, Samhita Roa ³ , Lichae Chang, Lisa Wager ¹ , Karya Swaminathan ¹ , Michael Green ² , Jennie Lill ³ , Mark Davis ² , Ron Levy ² , Ash Alizadeh ² , Joshua E Elias ³ Departments of Chemical & Systems Biology ³ , Medicine (Division of Oncology) ² , and Microbiology & Immunology ³ , Stanford University; Geneticch, Inc. ³ , Stanford University; Genetics, Inc. ³ , A Durnus-Stanford University Inc. ³ , For Levy ³ , Aside G. Durnus-Stanford University Inc. ³ , For Levy ³ , Stanford University Inc. ³ , Genetics, Jacob Department of Anashesiology, Perioperative & Pain Medicine; University Inc. ³ , Genetics, Jacob Department of Anashesiology, Perioperative & Pain Medicine (Division of Oncology), Christian Horner ⁴ , Alice C. Furi, Juergen K. Willman Lindente, Stanford University Inc. ⁴ , Genetics, Jacob Departments of Radiology, Biochemistry ³ , Genetics, and Medicine (Division of Oncology), Genetics, and Stanford University Fei Liu ^{1,2} , Ophir Vermesh ² , Sanford University Fei Liu ^{1,2} , Ophir Vermesh		Color-Changing Controlled by Tactile Sensing SIM Super-Resolution Images Provide Evidence that CNS Myelin	Chortos³, John To¹, Chien Lu¹, Jianquo Mei¹, Tadanori Kurosawa¹, Won-Gyu Bae¹, Jeffrey B H. Tok¹, Zhenan Bao¹.³* (*corresponding author) Departments of Chemical Engineering¹, Electrical Engineering², and Materials Science & Engineering³, Stanford University J. Bradley Zuchero¹, Adiljan Ibrahim¹, Andrew Olson², Ben Barres¹
Generation of EEG Oscillations in Neocortical Brain Slices Cayla ¹ , M. Bruce MacIver ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University Jacyoung Yang ^{1,5} , Naside G. Durmus ^{2,6} , Hojac Lee ^{1,5} , Baris C. Frant ¹ , Jurgen K. Willmann ^{1,5} Ronald W. Davig ^{2,1,6} , Lars Steinmetz ^{3,6} , Utkan Demirci ^{1,5} Departments of Radiology ¹ , Biochemistry ² , Cantay Center for Cancer Early Detection ² , and Stanford Genome Technology Center ⁶ , Stanford University Fei Liu ^{1,2} , Ophir Vermesh ² , Thomas Nieland ^{1,2} , Jessie Ge ³ , Uswam S. Nair ² , Sanjiv Sam Gambhir ^{1,2} , Utkan Demirci ^{1,3} Canary Center for Cancer Early Detection ³ , and Stanford Genome Technology Center ⁶ , Stanford University Fei Liu ^{1,2} , Ophir Vermesh ² , Thomas Nieland ^{1,2} , Jessie Ge ³ , Uswam S. Nair ² , Sanjiv Sam Gambhir ^{1,2} , Utkan Demirci ^{1,3} Canary Center for Cancer Early Detection ³ and Stanford Genome Technology Center ⁶ , Stanford University Jecutical Stanford For Cancer Early Detection ³ and Edicine ³ , Stanford University Pepartment of Orthopaedic Surgery ¹ , Stanford University Fariah Malzabeen ¹ , Jelean Levi ^{2,4} , James L. Zehnder ³ , Sanjiv S. Gambhir ^{3,4} , James L. Zehnder ³ , Sanjiv S. Gambhir ^{3,4} , James L. Zehnder ³ , Sanjiv S. Gambhir ^{3,4} , James S. Harris ³ Departments of Electrical Engineering ¹ , Stanford University Stanford University Norganical Engineering ¹ , Stanford University Norganical Engineering ¹ , Stanford University; Norganical Engineering ³ , Stanford University; Pepartment of Electrical Engineering ³ , Stanford University; Department of Electrical Engineering ³ , Stanford University; Depar	75		Microscopy Service ² , Stanford University Niclas Olsson ¹ , Michael Khodadoust ² , Keith Rawson ¹ , Qui Phung ³ , Veronica Aniana ³ , Samhita Rao ¹ , Lichao Zhang ¹ , Lisa Wager ⁴ , Kavya Swaminathan ¹ , Michael Green ² , Jennie Lill ³ , Mark Davis ⁴ , Ron Levy ² , Ash Alizadeh ² , Joshua E. Elias ¹ Departments of Chemical & Systems Biology ¹ , Medicine (Division of Oncology) ² , and Microbiology & Immunology ⁴ , Stanford
Magnetic Levitation Cell Sorter for CTC/CTM Isolation from Cancer Patient Blood Magnetic Levitation Cell Sorter for CTC/CTM Isolation from Cancer Patient Blood Exosome-Total-Isolation-Chip (ExoTIC) Device for Identification of Exosome-Based Biomarkers Chondrocytes Derived from Human Induced Pluripotent Stem Cells (hiPSCs) Are Resistant to Proinflammatory Cytokines as Compared to Adult Chondrocytes Optical BioSensor for Detecting Markers of Traumatic Brain Injury Towards Elucidating Protein-Protein Relationships: Using Targeted Single Cell Mass-Spectrometry to Analyze Endogenous Protein Covariance Patient Blood Individual Stanford University Department of Electrical Engineering ¹ , Stanford University Department of Chemical & Systems Biology ¹ , Stanford University Department of Chemical & Systems Biology ¹ , Stanford University Department of Department of Chemical & Systems Biology ¹ , Stanford University Department of Department of Chemical & Systems Biology ¹ , Stanford University Department of Department of Chemical & Systems Biology ¹ , Stanford University Nord University Department of Department of Department of Department of Chemical & Systems Biology ¹ , Stanford University Department of Department of Department of Department of Department of Chemical & Systems Biology ¹ , Stanford University Nord University Department of Department of Electrical Engineering ¹ , Stanford University Nord University Department of Electrical Engineering ¹ , Stanford University Nord Partment of Electrical Engineering ¹ , Stanford University; NyIDIA ² Department of Electrical Engineering ¹ , Stanford University; NyIDIA ² Song Han ¹ , Jeff Pool ² , John Tran ² , William J. Dally ^{1,2} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ¹ , Stanford University; NyIDIA ² Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Stanford University; NyIDIA ² Song Han ² , Huizi	76	Generation of EEG Oscillations in Neocortical Brain Slices	Cayla ¹ , M. Bruce MacIver ¹ Department of Anesthesiology, Perioperative &
Exosome-Total-Isolation-Chip (ExoTIC) Device for Identification of Exosome-Based Biomarkers Exosome-Based Biomarkers Chondrocytes Derived from Human Induced Pluripotent Stem Cells (hiPSCs) Are Resistant to Proinflammatory Cytokines as Compared to Adult Chondrocytes Optical BioSensor for Detecting Markers of Traumatic Brain Injury Towards Elucidating Protein-Protein Relationships: Using Targeted Single Cell Mass-Spectrometry to Analyze Endogenous Protein Covariance Learning Both Weights and Connections for Efficient Neural Networks Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding Dear Comparison of Fluid-Structure Interaction Modalities in Multiscale Jessie Ge², Viswam S. Nair³, Sanjiv Sam Gambhir¹². Utkan Demirci¹². Canary Center and Departments of Radiology² and Medicine³, Stanford University Jieun Lee¹, Piera Smeriglio¹, William J. Maloney¹, Nidhi Bhutani¹ Department of Orthopaedic Surgery¹, Stanford University Towards Elucidating Protein-Protein Relationships: Using Targeted Single Cell Mass-Spectrometry to Analyze Endogenous Protein Covariance Learning Both Weights and Connections for Efficient Neural Networks Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding A Comparison of Fluid-Structure Interaction Modalities in Multiscale Justin S. Tran¹, Vijay V. Vedula².3⁴, Abhay B.	77		Jaeyoung Yang ^{1,5} , Naside G. Durmus ^{2,6} , Hojae Lee ^{1,5} , Baris D. Ercal ^{1,5} , Huiping Zhang ¹ , Christian Hoerner ⁴ , Alice C. Fan ⁴ , Juergen K. Willmann ^{1,5} , Ronald W. Davis ^{2,3,6} , Lars Steinmetz ^{3,6} , Utkan Demirci ^{1,5} Departments of Radiology ¹ , Biochemistry ² , Genetics ³ , and Medicine (Division of Oncology) ⁴ , Canary Center for Cancer Early Detection ⁵ , and Stanford Genome Technology Center ⁶ , Stanford University
(hiPSCs) Are Resistant to Proinflammatory Cytokines as Compared to Adult Chondrocytes Maloney¹, Nidhi Bhutani¹ Department of Orthopaedic Surgery¹, Stanford University Fariah Mahzabeen¹, Jelena Levi²⁴, James L. Zehnder³, Sanjiv S. Gambhir²⁴, James S. Harris¹ Departments of Electrical Engineering¹, Radiology², and Hematology³ and Canary Center for Cancer Early Detection⁴, Stanford University Single Cell Mass-Spectrometry to Analyze Endogenous Protein Covariance Learning Both Weights and Connections for Efficient Neural Networks Learning Both Weights and Connections for Efficient Neural Networks Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding A Comparison of Fluid-Structure Interaction Modalities in Multiscale Maloney¹, Nidhi Bhutani¹ Department of Orthopaedic Surgery¹, Stanford University Fariah Mahzabeen¹, Jelena Levi²⁴, James L. Zehnder³, Sanjiv S. Gambhir²⁴, James S. Harris¹ Departments of Electrical Engineering¹, Radiology², and Hematology³ and Canary Center for Cancer Early Detection⁴, Stanford University Kyle Kovary¹, Michael Zhao¹, Mary Teruel¹ Department of Chemical & Systems Biology¹, Stanford University; Song Han¹, Jeff Pool², John Tran², William J. Dally¹.² Department of Electrical Engineering¹, Stanford University; NVIDIA² Song Han¹, Huizi Mao², William J. Dally¹.³ Department of Electrical Engineering¹, Stanford University; Department of Electrical En	78		Jessie Ge ² , Viswam S. Nair ³ , Sanjiv Sam Gambhir ^{1,2} , Utkan Demirci ^{1,2} Canary Center at Stanford for Cancer Early Detection ¹ and Departments of Radiology ² and Medicine ³ , Stanford University
Zehnder ³ , Sanjiv S. Gambhir ^{2,4} , James S. Harris ¹ Departments of Electrical Engineering ¹ , Radiology ² , and Hematology ³ and Canary Center for Cancer Early Detection ⁴ , Stanford University Towards Elucidating Protein-Protein Relationships: Using Targeted Single Cell Mass-Spectrometry to Analyze Endogenous Protein Covariance Learning Both Weights and Connections for Efficient Neural Networks Learning Both Weights and Connections for Efficient Neural Networks Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding A Comparison of Fluid-Structure Interaction Modalities in Multiscale Zehnder ³ , Sanjiv S. Gambhir ^{2,4} , James S. Harris ¹ Departments of Electrical Engineering ¹ , Radiology ² , and Hematology ³ and Canary Center for Cancer Early Detection ⁴ , Stanford University Kyle Kovary ¹ , Michael Zhao ¹ , Mary Teruel ¹ Department of Chemical & Systems Biology ¹ , Stanford University Song Han ¹ , Jeff Pool ² , John Tran ² , William J. Dally ^{1,2} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Tsinghua University; NVIDIA ³ Justin S. Tran ¹ , Vijay V. Vedula ^{2,3,4} , Abhay B.	79	(hiPSCs) Are Resistant to Proinflammatory Cytokines as Compared to	Maloney ¹ , Nidhi Bhutani ¹ Department of Orthopaedic Surgery ¹ , Stanford
Towards Elucidating Protein-Protein Relationships: Using Targeted Single Cell Mass-Spectrometry to Analyze Endogenous Protein Covariance Kyle Kovary ¹ , Michael Zhao ¹ , Mary Teruel ¹ Department of Chemical & Systems Biology ¹ , Stanford University Song Han ¹ , Jeff Pool ² , John Tran ² , William J. Dally ^{1,2} Department of Electrical Engineering ¹ , Stanford University; NVIDIA ² Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding A Comparison of Fluid-Structure Interaction Modalities in Multiscale Kyle Kovary ¹ , Michael Zhao ¹ , Mary Teruel ¹ Department of Chemical & Systems Biology ¹ , Stanford University Song Han ¹ , Jeff Pool ² , John Tran ² , William J. Dally ^{1,2} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Tsinghua University; NVIDIA ³ Justin S. Tran ¹ , Vijay V. Vedula ^{2,3,4} , Abhay B.	80	Optical BioSensor for Detecting Markers of Traumatic Brain Injury	Fariah Mahzabeen ¹ , Jelena Levi ^{2,4} , James L. Zehnder ³ , Sanjiv S. Gambhir ^{2,4} , James S. Harris ¹ Departments of Electrical Engineering ¹ , Radiology ² , and Hematology ³ and Canary Center
Learning Both Weights and Connections for Efficient Neural Networks Bally ^{1,2} Department of Electrical Engineering ¹ , Stanford University; NVIDIA ² Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Stanford University; Department of Electrical Engineering ² , Tsinghua University; NVIDIA ³ A Comparison of Fluid-Structure Interaction Modalities in Multiscale Learning Both Weights and Connections for Efficient Neural Networks Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Tsinghua University; NVIDIA ³ Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Tsinghua University; NVIDIA ³ Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} University; Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Tsinghua University; NVIDIA ³ Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , William J. Dally ^{1,3} Song Han ¹ , Huizi Mao ² , W	81	Single Cell Mass-Spectrometry to Analyze Endogenous Protein	Kyle Kovary ¹ , Michael Zhao ¹ , Mary Teruel ¹ Department of Chemical & Systems Biology ¹ , Stanford University
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding Department of Electrical Engineering ¹ , Stanford University; Department of Electrical Engineering ² , Tsinghua University; NVIDIA ³ A Comparison of Fluid-Structure Interaction Modalities in Multiscale Justin S. Tran ¹ , Vijay V. Vedula ^{2,3,4} , Abhay B.	82	Learning Both Weights and Connections for Efficient Neural Networks	Dally ^{1,2} Department of Electrical Engineering ¹ , Stanford University; NVIDIA ²
A Comparison of Fluid-Structure Interaction Modalities in Multiscale Justin S. Tran ¹ , Vijay V. Vedula ^{2,3,4} , Abhay B.	83		Department of Electrical Engineering ¹ , Stanford University; Department of Electrical
	84		Justin S. Tran ¹ , Vijay V. Vedula ^{2,3,4} , Abhay B.

		Departments of Mechanical Engineering ¹ ,
		Bioengineering ² , and Pediatrics ⁴ and Institute for Computational & Mathematical Engineering ³ , Stanford University
85	A Steroid Impact on Sonic Hedgehog Signaling	Navdar Sever ^{1,2,3,4} , Randall K. Mann ^{1,2,3,4} , Libin Xu ⁵ , William J. Snell ⁶ , Carmen I. Hernandez-Lara ⁶ , Ned A. Porter ⁵ , Philip A. Beachy ^{1,2,3,4} Institute for Stem Cell & Regenerative Medicine ¹ , Departments of Biochemistry ² and Developmental Biology ³ , and Howard Hughes Medical Institute ⁴ , Stanford University; Department of Chemistry ⁵ , Vanderbilt University; Department of Cell Biology ⁶ , University of Texas Southwestern Medical School
86	Single-Cell RNAseq Reveals Multiple Novel Subtypes of Striatal Neurons	Geoff Stanley ¹ , Ozgun Gokce ² , Thomas C. Südhof ⁴ , Stephen R. Quake ^{3,4} Biophysics Program ¹ , Howard Hughes Medical Institute ⁴ , and Departments of Molecular & Cellular Physiology ² and Bioengineering ³ , Stanford University
87	Vertical Nanopillars for <i>In Situ</i> Probes of Nuclear Mechanotransduction	Hsin-Ya Lou ¹ , Lindsey Hanson ¹ , Wenting Zhao ² , Yi Cui ^{2,3} , Bianxiao Cui ¹ * (*corresponding author) Departments of Chemistry ¹ and Materials Science & Engineering ² , Stanford University; and Stanford Institute for Materials & Energy Sciences ³ , SLAC National Accelerator Laboratory
88	PolyQ Flanking Regions of Huntingtin Impact Toxicity and Protein Homeostasis by Directing Huntingtin Aggregation Kinetics, Conformation, and Stability	Koning Shen ¹ , Jonathan Fauerbach ¹ , Barbara Calamini ² , Boxue Ma ³ , Wah Chiu ³ , Donald Lo ² , Judith Frydman ¹ Department of Biology ¹ , Stanford University; Department of Neurobiology ² , Duke University; Department of Biochemistry & Molecular Biology ³ , Baylor College of Medicine, Houston, Texas
89	Rapid Point-of-Card Detection of Mycobacterium tuberculosis	Yunfeng (Jerry) Cheng ^{1,2,3} , Jinghang Xie ^{1,2,3} , Jianghong Rao ^{1,2,3} * (*corresponding author) Molecular Imaging Program at Stanford (MIPS) ¹ and Departments of Radiology ² and Chemistry ³ , Stanford University
90	Absence of Bistability in Rb Hyperphosphorylation During Cell-Cycle Entry	Mingyu Chung ¹ , Chad Liu ¹ , Hee Won Yang ¹ , Ariel Jaimovich ¹ , Tobias Meyer ¹ Department of Chemical & Systems Biology ¹ , Stanford University
91	Ultra-high Field Magnetic Resonance Imaging of Magnetic Susceptibility in Cortical Lesions of Multiple Sclerosis	Departments of Radiology ¹ and Neurology ² , Stanford University
92	SHG Microendoscopy Reveals Slowing of Motor Units with ALS in SOD1G93A Mice	Xuefeng Chen ¹ , Mark Schnitzer ^{2,3,4} , Scott Delp ^{1,5} Departments of Mechanical Engineering ¹ , Biology ² , Applied Physics ³ , and Bioengineering ⁵ and Howard Hughes Medical Institute ⁴ , Stanford University
93	Steerable Ablation Probes for Percutaneous Treatment of Tumors in the Liver	Joseph D. Greer ¹ , Troy K. Adebar ¹ , Gloria L. Hwang ¹ , Allison M. Okamura ¹ Departments of Mechanical Engineering ¹ and Radiology ² , Stanford University
94	Building a Multi-Well Format, Open-Source Oscillating Fluid Exchange System for Cell-Based Assays	Tsung-Yuan Wu ¹ , Stefan Tholen ² , Allison Okamura ¹ , Mary N. Teruel ² Departments of Mechanical Engineering ¹ and Chemical & Systems Biology ² , Stanford University

95	Human Induced Pluripotent Stem Cell-derived Cardiomyocytes Reveals Hypokalemia-Induced Exacerbation of Ventricular Arrhythmogenicity of Anti-Arrhythmic Drugs	Praveen Shukla ^{1,2,3} , Elena Matsa ^{1,2,3} , Priyanka Garg ^{1,2,3} , Wenyi Chen ^{1,2,3} , Arun Sharma ^{1,2,3} , Oscar J. Abilez ^{1,2,3} , Joseph D. Gold ^{1,5} , Joseph C. Wu ^{1,2,3} * (*corresponding author) Stanford Cardiovascular Institute ¹ , Institute for Stem Cell Biology & Regenerative Medicine ² , Departments of Medicine (Division of Cardiology) ³ , Chemistry ⁴ , and Cardiothoracic Surgery ⁵ , Stanford University
96	Blockade of the Neogenin-RGMb-BMP Signaling Hub Inhibits Allergen-Induced Airway Hyperreactivity	Sanhong Yu ^{1,2,3,4} , Krystle M. Leung ^{1,2} , Hye-Young Kim ^{1,2,5} , Yanping Xiao ^{3,4} , Lee A. Albacker ^{1,2,6} , Dale T. Umetsu ^{1,2,7} , Gordon J. Freeman ^{3,4} , Rosemarie DeKruyff ^{1,2,8} Division of Immunology ¹ , Children's Hospital Boston; Departments of Pediatrics ² and Medicine ⁴ , Harvard Medical School; Department of Medical Oncology ³ , Dana-Farber Cancer Institute, Boston; Department of Biomedical Sciences ⁵ , Seoul National University College of Medicine, Korea; (present address) Foundation Medicine, Inc. ⁶ , Cambridge, MA; (present address) Genentech, Inc. ⁷ , South San Francisco; (present address) Department of Medicine ⁸ , Stanford University
97	Strain-Sensitive Upconverting Nanoparticles for Imaging Forces in Biology	Alice Lay ¹ , Michael Wisser ² , Yu Lin ³ , Tarun Narayan ² , Michael Krieg ⁴ , Ashwin Atre ² , Miriam Goodman ⁴ , Jennifer Dionne ² Departments of Applied Physics ¹ , Materials Science & Engineering ² , Geological & Environmental Sciences ³ , and Molecular & Cellular Physiology ⁴ , Stanford University
98	TET-Mediated Stable 5hmC Deposition, but Not TDG Function, Is Required for Chondrogenic Differentiation	Fiorella Grandi ¹ , Sarah E. B. Taylor ¹ , Ye Henry Li ² , Piera Smeriglio ¹ , Wing H. Wong ³ , Nidhi Bhutani ¹ Departments of Orthopaedic Surgery ¹ , Structural Biology ² , and Statistics ³ , Stanford University
99	Development of a Novel Platform for Derivation of Single Cell Adipocytes from Human Induced Pluripotent Stem Cells (hiPSCs)	Mohammad Shahbazi ¹ , Philip Lee ¹ , Paige Cundiff ² , Fahim Abbasi ¹ , Sunita D'Souza ² , Ihor Lemischka ² , Thomas Quertermous ¹ , Joshua W. Knowles ¹ Stanford Cardiovascular Institute ¹ , Stanford University; Department of Developmental & Regenerative Biology ² , Icahn School of Medicine at Mount Sinai, New York
100	Capsule Endoscopic Ultrasound Device	Farah Memon ¹ , Gerard Touma ¹ , Junyi Wang ¹ , Spyridon Baltsavias ¹ , Morten Rasmussen ¹ , Chienliu Chang ¹ , Eric W. Olcott ¹ , R. Brooke Jeffrey ¹ , Amin Arbabian ¹ , Butrus (Pierre) T. Khuri-Yakub ¹ Department of Electrical Engineering ¹ , Stanford University
101	Enantioselective Photolysis of Chiral Molecules Using Resonant Dielectric Nanoparticles	Chi-Sing Ho ¹ , Yang Zhao ² , Aitzol Garcia ³ , Jennifer Dionne ² Departments of Applied Physics ¹ and Materials Science & Engineering ² , Stanford University; Donostia International Physics Center ³ , Donostia, Spain
102	Microfluidic Worm Dispenser	Florian Bienefelt ^{1,4} , Frédéric Loizeau ¹ , Eileen Mazzochette ² , Sylvia Fechner ³ , Jürgen Brugger ⁴ , Miriam B. Goodman ^{1,3} , Beth L. Pruitt ^{1,3} Departments of Mechanical Engineering ¹ , Electrical Engineering ² , and Molecular & Cellular Physiology ³ , Stanford University; École

		Polytechnique Fédérale de Lausanne ⁴ , Switzerland
103	A Stretchable Live Cell Platform to Probe Gut Mechanobiology	Joan Teixidor ^{1,4} , Jens Moeller ³ , Bryon Foys ² , Chase Wood ² , Lucy Erin O'Brien ² , Beth Pruitt ^{1,2} Departments of Mechanical Engineering ¹ , and Molecular & Cellular Physiology ² , Stanford University; Department of Health Science & Technology ³ , ETH Zürich; Department of Microengineering ⁴ , École Polytechnique Fédérale de Lausanne ⁴ , Switzerland
104	Transcription Factor Dynamics Identify a Circadian Code for Fat Cell Differentiation	Zahra Bahrami-Nejad ^{1*} , Michael L. Zhao ^{1*} , Sabine van Schie ¹ , Mingyu Chung ¹ , Mary N. Teruel ¹ (*equal contribution) Department of Chemical & Systems Biology ¹ , Stanford University
105	Social Status of Robots: Supporting Design of Human-Robot Relationships with Exploratory Assessment	Jamy Li ^{1,2} , Wendy Ju ¹ (collaborations with Rene Kizilcec ² , Jeremy Bailenson ² , Byron Reeves ²) Center for Design Research ¹ and Department of Communication ² , Stanford University
106	Gene Expression Meta Analysis to Create a Quantitative Measure of Field Change in Smoker Airway Epithelium: Towards More Precise Risk Estimates of Tobacco Attributable Disease	Evan Minty ^{1,2*} , Rohun Kshirsagar ^{3*} , Timothy Sweeney ^{2,3} , Francesco Vallania ³ , Winn Haynes ² , Hua Fan Minogue ³ , Kari Nadeau ³ , Purvesh Khatri ^{2,3} (*first authors) O'Brien Institute for Public Health ¹ , University of Calgary; Biomedical Informatics Training Program ² , Stanford University; Institute for Immunity, Transplantation, & Infection ³ , Stanford University