

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Symposium Poster Session

August 29, 2019

Posters are alphabetized by the last name of the presenter. Presenters' names are listed in bold.

2019 STANFORD BIO-X UNDERGRADUATE SUMMER RESEARCH PROGRAM COHORT

POSTER #	TITLE	AUTHORS
1	Characterizing Neural Activity in the ALM and Medulla	Nic Becker ¹ , Shaul Druckmann ^{2,3} Departments of Physics ¹ , Neurobiology ² , and Psychiatry & Behavioral Sciences ³ , Stanford University
2	How Are Neurons Assembled? Exploring the Molecular Mechanisms of Nemitin, a Novel Microtubule Organizing Protein	Brandon Bergsneider ¹ , Ivan Millan ¹ , Yanmin Yang ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
3	Connecting Single-Sarcomere Dynamics with Contractile Force Production in DMD hiPSC-CMs	Foster Birnbaum ¹ , Gaspard Pardon ¹ , Helen Blau ¹ Department of Microbiology & Immunology ¹ , Stanford University
4	Multiple Overlapping Hypothalamus-Brainstem Circuits Drive Rapid Threat Avoidance	Susanna Bradbury ^{1,2} , Matthew Lovett- Barron ^{1,2} , Ritchie Chen ^{1,2} , Karl Deisseroth ^{1,2,3,4} Departments of Bioengineering ¹ and Psychiatry & Behavioral Sciences ³ , CNC Program ² , and Howard Hughes Medical Institute ⁴ , Stanford University
5	Light Up the Labyrinth: Creating Map for Forelimb Motor Neuron Circuits in Immunodeficient Rats	Xiangmeng Cai ¹ , Vanessa Doulames ² , David Altman ² , Dean Tran ² , Giles W. Plant ² Departments of Bioengineering ¹ and Neurosurgery ² , Stanford University
6	Sulfate-Reducing Bacteria and Gut Inflammation in Bangladeshi Children	Rebecca Christensen ¹ , Jessica Grembi ² , Alfred Spormann ² Departments of Biology ¹ and Civil & Environmental Engineering ² , Stanford University
7	Investigating the Immunological Structure and Composition of Tuberculosis Granulomas with Multiplexed Ion Beam Imaging	Alea Delmastro ^{1,2} , Erin McCaffrey ^{3,4} , Joshua Mattila ⁵ , Noah Greenwald ³ , Leeat Keren ³ , Michael Angelo ³ Departments of Chemical Engineering ¹ and Pathology ³ , Stanford Bio-X Undergraduate Summer Research Program ² , and Immunology Program ⁴ , Stanford University; Department of Infectious Diseases & Microbiology ⁵ , University of Pittsburgh
8	Making Mosquitoes the New Grunt Pipetters: Rapid Polling of Vector- Pathogen Ecology	Clayton Ellington ¹ , Shailabh Kumar ¹ , Felix Hol ¹ , Manu Prakash ¹ Department of Bioengineering ¹ , Stanford University
9	Multiplexed Serum Autoantibody Profiling of Idiopathic Multicentric Castleman Disease (iMCD)	Allan Feng ¹ , Tea Dodig-Crnkovic ² , Sarah Chang ¹ , Jochen Schwenk ² , David Fajgenbaum ³ , Paul J. Utz ¹ Department of Medicine ¹ , Stanford University; KTH Royal Institute of Technology ² , Stockholm; Perelman School of Medicine ³ , University of Pennsylvania
10	Suppressing Huntingtin Aggregation Through the Directed Evolution of ApiCCT1	Anthony Flores ¹ , T. Kelly Rainbolt ¹ , Judith Frydman ¹ Department of Biology ¹ , Stanford University

11	Crystallization of a Novel Immune Checkpoint Protein	Jessica Frank ¹ , Jack Silberstein ^{1,2} , Daniel Fernandez ³ , Jennifer Cochran ^{1,2} Department of Bioengineering ¹ , Program in Immunology ² , and ChEM-H Macromolecular Structure Knowledge Center ³ , Stanford University
12	Uncovering the Mechanism of Smoothened Activation in Hedgehog Signaling through Directed Mutagenesis	Sara Frigui ¹ , Maia Kinnebrew ¹ , Rajat Rohatgi ¹ Department of Biochemistry ¹ , Stanford University
13	Determining the Effect of Maternal Immune Activation on Priming Microglial Responses	Catherine Gao ¹ , Jennifer Su ¹ , Theo Palmer ¹ Department of Neurosurgery ¹ , Stanford University
14	Air Pollution, Cellular Aging, and Stress Biology in Adolescents: The Role of Familial Risk for Depression	Julia S. Gillette ¹ , Jonas G. Miller ¹ , Ian H. Gotlib ¹ Stanford Neurodevelopment, Affect & Psychopathology Laboratory ¹ , Stanford University
15	Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment	 Jacob Greene^{1,2}, Anna C. Geraghty^{1,2}, Erin M. Gibson¹, Reem A. Ghanem¹, Alfonso Ocampo¹, Andrea K. Goldstein¹, Lijun Ni¹, Tao Yang¹, Rebecca M. Marton^{2,3}, Sergiu P. Pasca^{2,3}, Michael E. Greenberg⁴, Frank M. Longo^{1,2}, Michelle Monje^{1,3,5,6,7} Departments of Neurology & Neurological Sciences¹, Psychiatry & Behavioral Sciences³, Pathology⁵, and Pediatrics⁶, Stanford Bio-X², and Institute for Stem Cell Biology & Regenerative Medicine⁷, Stanford University; Department of Neurobiology⁴, Harvard Medical School
16	The Nuclear Option: Regulation of the Nuclear Lamina in Tumor Evolution	Sierra Ha ¹ , Amar Mirza ¹ , Siegen McKellar ¹ , Fernanda Gonzalez ¹ , Anthony Oro ¹ Department of Dermatology (Program in Epithelial Biology) ¹ , Stanford University
17	In situ Barcode Sequencing for Pooled CRISPR Screens	Cynthia Hao ¹ , Adrian Sanborn ^{2,3} , Lorenzo Labitigan ^{4,5} , Julie Theriot ⁵ , Roger Kornberg ² Departments of Bioengineering ¹ , Structural Biology ² , Computer Science ³ , and Biochemistry ⁴ , Stanford University; Department of Biology ⁵ , University of Washington
18	Engineering Cyanobacteria to Synthesize and Produce Stromal Cell Derived Factor 1-alpha (SDF1 - α)	Maria Paula Hernandez ¹ , Kevin James Jaatinen ^{2,3} , Hanjay Wang ^{2,3} , Joseph Woo ^{2,3} Departments of Bioengineering ¹ and Cardiothoracic Surgery ² and Stanford Advanced Therapeutics for Heart Failure Research Laboratory ³ , Stanford University
19	Using Nanopore Long-Read Sequencing to Investigate Cryptic Adaptation	Sam Hoelscher ¹ , Gavin Sherlock ¹ Department of Genetics ¹ , Stanford University
20	Extending LitGen: Incorporating Expert Knowledge for Literature Curation	Emily Huang ¹ , Julia Gimbernat ¹ , Allen Nie ¹ , Carlos Bustamante ¹ Department of Biomedical Data Science ¹ , Stanford University
21	The Dark Side of the Brain: Defining the Molecular Mechanisms Underlying Neurofibromatosis 1 - Optic Pathway Gliomas	Jared Hysinger ¹ , Yuan Pan ² , Nicki Schindler ³ , James Lennon ² , Anitha Ponnuswami ² , Xiaofan Guo ⁴ , Yu Ma ⁴ , Courtney Corman ⁴ , David Gutmann ⁴ , Michelle Monje ² Departments of Biology ¹ , Neurology ² , and Human Biology ³ , Stanford University; Department of Neurology ⁴ , Washington University
22	The I-BAR Gene Mtss11 Regulates Endocytosis in Cerebellar Astrocytes	Alexander S. Brown ¹ , Jessica Magri ¹ , Woo Joo Kwon ¹ , Anthony E. Oro ¹ *

		(*corresponding author) Program in Epithelial Biology ¹ , Stanford University
23	New Genetic Tools Reveal Dynamic Populations of Transitioning Cells During <i>Drosophila</i> Intestinal Homeostasis	Andrew Labott ¹ , Erin Sanders ^{1,2} , Lucy O'Brien ¹ Departments of Molecular & Cellular Physiology ¹ and Developmental Biology ² , Stanford University
24	Ciliary INVS Is Oxygen Sensitive Independent of the NEK8-ANKS6 Complex	Tracy Lang ¹ , Henrietta Bennett ¹ , Timothy Klasson ² , Peter Jackson ¹ Departments of Microbiology & Immunology ¹ and Radiation Oncology ² , Stanford University
25	Dendritic Spine Density in an Alzheimer's Mouse Model	Kate LeBlanc ¹ , Michelle Drews ¹ , Carla Shatz ^{1,2} Departments of Biology ¹ and Neurobiology ² , Stanford University
26	A Foundation for Massively Parallel Precise Genome Editing in Human Cells	Jiwoo Lee ¹ , Shi-An Chen ¹ , Xiaoshu Xu ² , Stanley Lei Qi ² , Hunter Fraser ¹ Departments of Biology ¹ and Bioengineering ² , Stanford University
27	Adrenaline Rush: Characterizing Noradrenaline Expression in the Prefrontal Cortex	Max Lee ¹ , Adrienne Mueller ¹ , Tirin Moore ¹ Department of Neurobiology ¹ , Stanford University
28	Seeing with a Meaning: Functional MRI Mapping of Social Gaze Features under Dynamic Visual Stimuli in the Common Marmoset	Andrew Tong Li ¹ , Nicholas Alexander Tran ¹ , Nikola Todorov Markov ¹ , Keren Haroush ¹ Department of Neurobiology ¹ , Stanford University
29	Assessing Dimensionality Reduction Techniques Downstream of Coupled Clustering on Single Cell Genomic Data	Miranda Li ¹ , Zhana Duren ¹ , Wing H. Wong ¹ Department of Statistics ¹ , Stanford University
30	Developing a Cellular Vaccine for Liver-Stage Malarial Infection	Matthew Liao ^{1,2} , Rodolfo Vicetti Miguel ¹ , Nirk Quispe Calla ¹ , Kristen Aceves ¹ , Thomas Cherpes ¹ Department of Comparative Medicine ¹ and Stanford Bio-X ² , Stanford University
31	Characterizing Cell-Type Dependent IRES Activity of circRNAs Using a High-Throughput Library Screening Method	Fan Liu ^{1,2} , Chun-Kan Chen ^{1,2} , Howard Y. Chang ^{1,2} Departments of Dermatology ¹ and Genetics ² , Stanford University
32	Synthetic Efforts Toward 10-Saxitoxinethanoic Acid	Jay Liu ^{1,2} , Holly Hajare ¹ , Justin Du Bois ¹ Departments of Chemistry ¹ and Computer Science ² , Stanford University
33	Applying CRISPR Tools to Engineer Parallel Logic Gates in Mammalian Cells	Kasey Love ¹ , Hannah R. Kempton ¹ , Laine Goudy ¹ , Stanley Lei Qi ^{1,2,3} Departments of Bioengineering ¹ and Chemical & Systems Biology ² and ChEM-H ³ , Stanford University
34	Combating High Grade Serous Ovarian Cancer: Identifying Drug Combinations to Target and Destroy Carboplatin-Resistant VMH Cells	Alexis Lowber ^{1,2} , Ying-Wen Huang ^{1,2} , Jacob Bedia ^{1,2} , Alyssa Mike ^{1,2} , Veronica D. Muñoz ³ , Wendy J. Fantl ^{1,2} Departments of Urology ¹ , Obstetrics & Gynecology ² , and Microbiology & Immunology ³ , Stanford University
35	Identifying Molecular Biomarkers of Acute Respiratory Distress Syndrome (ARDS) Through Desorption Ionization Mass Spectrometry and Machine Learning	Rohan Mehrotra ¹ , Zhenpeng Zhou ^{1, 2} , Angela Rogers ³ , Richard N. Zare ¹ Departments of Chemistry ¹ and Medicine (Pulmonary & Critical Care Division) ³ , Stanford University; Facebook, Inc. ³
36	A Bioengineered 3D Model of Osteosarcoma Using Gelatin-Based Microribbon Scaffolds	Omeed Miraftab-Salo ¹ , Eva C. González Díaz ¹ , Fan Yang ^{1,2} Departments of Bioengineering ¹ and Orthopaedic Surgery ² , Stanford University
37	Elucidating the Role of ARMCX3 in Synaptogenesis	Stephen Moye ¹ , Louise Giam ² , Thomas Südhof ² Departments of Bioengineering ¹ and Molecular & Cellular Physiology ² , Stanford University

38	Virus Inclusive Single Cell RNA-Seq Profiling in Cells Infected With Venezuelan Equine Encephalitis Virus	Avery Muniz ¹ , Sathish Kumar ^{2,3} , Zhiyuan Yao ^{2,3} , Sirle Saul ^{2,3} , and Shirit Einav ^{2,3} Departments of Biology ¹ , Medicine (Division of Infectious Diseases and Geographic Medicine) ² , and Microbiology & Immunology ³ , Stanford University
39	c-Jun Amplifies the Pro-Osteogenic Potential of Osteoprogenitors Through Increased Hedgehog- and Wnt-Signaling	Claire Muscat ¹ , Tristan Lerbs ¹ , Camille van Neste ¹ , Pablo Domizi ¹ , Yong-Hun Kim ¹ , Alexa Vu ¹ , Charles K. Chan ² , Gerlinde Wernig ^{1,2} Department of Pathology ¹ and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
40	The Functional Role of Amygdala-Dopamine Interactions in Motivated Behaviors	Elizabeth E. Steinberg ^{1,2} , Felicity Gore ^{1,2,3,4} , Madison D. Taylor ^{1,2} , Zane C. Norville ^{1,2} , Talia N. Lerner ^{2,3,4,5} , Karl Deisseroth ^{2,3,4} , Robert C. Malenka ^{1,2} Departments of Psychiatry & Behavioral Sciences ² and Bioengineering ⁴ , Nancy Pritzker Laboratory ¹ , and HHMI ³ , Stanford University; Department of Physiology ⁵ , Northwestern University
41	Profiling the Inflammasome Assembly Time Course after dMCAO Stroke	Sierra Porter ¹ , Victoria Hernandez ¹ , Marion Buckwalter ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
42	Investigating the Effects of Hormone Treatment on Cognition, Behavior, and Neurodevelopment in Transgender Youth	Bobby Radecki ¹ , Maureen Gil ¹ , Sharon Bade Shrestha ¹ , Iliana Karipidis ¹ , David Hong ¹ Department of Psychiatry & Behavioral Sciences (Center for Interdisciplinary Brain Science Research) ¹ , Stanford University
43	Exploring Innate Immune Cell Responses to Dengue Virus	John Rees ¹ , Laura Simpson ² , Catherine Blish ² Departments of Biology ¹ and Medicine (Infectious Diseases) ² , Stanford University
44	Investigating Cell Composition Differences in Human Cortical Spheroids Derived from 22q11 Deletion Syndrome Patients	Julia M. Schaepe ^{1,2} , Themasap A. Khan ^{1,2} , Sergiu P. Pasca ^{1,2} Department of Psychiatry & Behavioral Sciences ¹ and Stanford Human Brain Organogenesis Program ² , Stanford University
45	Cell-Type Specific Subcellular Organization of Delta and Mu Opioid Receptors	Ethan Schonfeld ¹ , William McCallum ^{2,3,4,5} , Gregory Scherrer ^{2,3,4,5,6} School of Humanities & Sciences ¹ , Departments of Anesthesiology, Perioperative & Pain Medicine ² , Molecular & Cellular Physiology ³ , and Neurosurgery ⁴ , Wu Tsai Neurosciences Institute ⁵ , and New York Stem Cell Foundation – Robertson Investigator ⁶ , Stanford University
46	The Effect of Baseline Ability and Age on Improvements in a Specialized Skill-Specific Cognitive Training Regimen	Jacob Shaw ¹ , Hannah Fingerhut ¹ , Lindsay Chromik ¹ , S.M. Hadi Hosseini ¹ Department of Psychiatry & Behavioral Sciences ¹ , Stanford University
47	The Role of Ceramide Synthesis in Regulating Myelination in Zebrafish	Tara Shelby ¹ , Ellen Bouchard ¹ , William Talbot ¹ Department of Developmental Biology ¹ , Stanford University
48	c-Jun Drives Scleroderma through Increased Hedgehog Signaling	Tyler Shibata ^{1*} , Tristan Lerbs ^{1*} , Lu Cui ¹ , Tim Chai ² , Claire Muscat ¹ , Gerlinde Wernig ^{1,2} (*equal contribution) Department of Pathology ¹ and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
49	Making (Peristaltic) Waves: Exploring the Enteric Nervous System Using an <i>ex vivo</i> Gastrointestinal Motility Monitor	Rahul Shiv ¹ , Subhamoy Das ¹ , Estelle Spear ² , Grant Hennig ³ , Aida Habtezion ² , Julia Kaltschmidt ^{1,4} Departments of Neurosurgery ¹ and Gastroenterology ² and Wu Tsai Neurosciences

		Institute ⁴ , Stanford University; Department of Pharmacology ³ , University of Vermont
50	Developing an Opioid-Induced Hyperalgesic Rat Model for NF-κB Activation Studies	Anika Sinha ¹ , Mikhail Klukinov ¹ , Eunjoo Choi ¹ , David C. Yeomans ¹ Department of Anesthesiology ¹ , Stanford University
51	Investigating the Dynamics of HIF-1a Activation in Response to Immune Stimuli	Joanna Song ¹ , Stevan Jeknić ¹ , Markus W Covert ¹ Department of Bioengineering ¹ , Stanford University
52	2 Dissecting the RNA Interactome	Stephen Su ¹ , Jason Cheng ¹ , Le Cong ^{1,2} Departments of Genetics ¹ and Pathology ² , Stanford University
53	Genetic and Proteomic Ligand Discovery for CD22, a Microglial Homeostasis Regulator	Jerry Sun ^{1,2} , John V. Pluvinage ^{1,3,4} , Michael S. Haney ¹ , Ryan A. Flynn ⁵ , Carolyn R. Bertozzi ^{5,6,7,8} , Tony Wyss-Coray ^{1,7,9,10,11} Departments of Neurology & Neurological Sciences ¹ , Chemical Engineering ² , Chemistry ⁵ , and Chemical & Systems Biology ⁶ , Medical Scientist Training Program ³ , Stem Cell Biology & Regenerative Medicine Graduate Program ⁴ , ChEM-H ⁷ , Paul F. Glenn Center for the Biology of Aging ¹⁰ , and Wu Tsai Neurosciences Institute ¹¹ , Stanford University; Howard Hughes Medical Institute ⁸ ; VA Palo Alto Health Care System ⁹
54	Developing an Image Recognition Atlas for Optogenetic Functional Ultrasound Imaging of the Brain in Awake and Behaving Mice	Colton Swingle ¹ , Brad Edelman ² , Giovanna Diletta Ielacqua ² , Jin Hyung Lee ^{1,2,3,4} Departments of Bioengineering ¹ , Neurology & Neurological Sciences ² , Neurosurgery ³ , and Electrical Engineering ⁴ , Stanford University
55	<i>In vivo</i> Temporal Mapping of Proneural Transcription Factors <i>Ascl1</i> and <i>Myt1</i> During Embryonic Pulmonary Development	Mingqian Tan ¹ , Christin Kuo ¹ Department of Pediatrics ¹ , Stanford University
56	Exploring Small Eye Movements and Adaptive Plasticity in the Mouse Oculomotor Integrator	Ella Tessier-Lavigne ¹ , Sriram Jayabal ¹ , Jennifer Raymond ¹ Department of Neurobiology ¹ , Stanford University
57	The Antenna's All the Difference: How Does Having a Ciliated Centriole Change Centriole Function?	Anaïs Tsai ¹ , Emily Ho ² , Tim Stearns ^{1,3} Departments of Biology ¹ , Developmental Biology ² , and Genetics ³ , Stanford University
58	Determining the Mechanisms by Which SGLT2 Inhibitors Improve Vascular Function in Diabetes	Emma Tsai ^{1,2,3} , Ian Y. Chen ^{1,4} , Vincent Wo ^{1,2,3} , Huaxiao Yang ^{1,2,3} , Pedro Medina ^{1,4} , Cho-Kai Wu ^{1,2,3} , Chun Liu ^{1,2,3} , Nazish Sayed ^{1,2,3} , Tracy McLaughlin ⁵ , Joseph Wu ^{1,2,3} Cardiovascular Institute ¹ and Departments of Medicine (Divisions of Cardiovascular Medicine ² and Endocrinology ⁵) and Radiology ³ , Stanford University; Medical Service (Cardiology Section) ⁴ , VA Palo Alto Health Care System
59	Genetic Mechanisms of Olfactory Receptor Specification During Development in <i>Drosophila</i>	David Vacek ¹ , Hongjie Li ¹ , Liqun Luo ¹ Department of Biology ¹ , Stanford University
60	Epigenetic Modulation of CAR T Cell Function	Panayiotis Vandris ¹ , Evan W. Weber ¹ , Crystal L. Mackall ¹ Stanford Cancer Institute ¹ , Stanford University
61	Maximum-Flow Formulation Identifies High-Confidence Variants in Simple Repeat Sequences Associated with Autism Spectrum Disorder	Maya Varma ¹ , Kelley Paskov ² , Brianna Chrisman ³ , Min Woo Sun ^{2,5} , Jae-Yoon Jung ^{2,5} , Nate Stockham ⁴ , Peter Washington ³ , Dennis P. Wall ^{2,5} Departments of Computer Science ¹ , Biomedical Data Science ² , Bioengineering ³ , Neuroscience ⁴ , and Pediatrics ⁵ , Stanford University

62	Visualization and Manipulation of Novel Hypothalamic Sexually Dimorphic Genes	Grace Wang ^{1,2} , Joe Knoedler ¹ , Nirao Shah ^{1,2} Departments of Psychiatry & Behavioral Sciences ¹ and Neurobiology ² , Stanford University
63	Finding Markers of Human Stress Responses through Virtual Reality Using Objective Physiological Measurements	Marlon Joseph Washington II ¹ , Melis Yilmaz Balban ¹ , Andrew Huberman ² Departments of Neurobiology ¹ and Ophthalmology ² , Stanford University
64	Demographic Inference from Smartphone Gait Acceleometry: Applying Deep Convolutional Networks to the MyHeartCounts Six-Minute Walk Test	Daniel Wu ¹ , Anna Shcherbina ² , Steve Hershman ² , Euan Ashley ² Departments of Computer Science ¹ and Medicine ² , Stanford University
65	An Enzymatic Toolkit for Studying Mucin-Domain Glycoproteins	Emily Yang ^{1,2} , Judy Shon ² , Stacy A. Malaker ² , Carolyn R. Bertozzi ^{2,3} Departments of Biology ¹ and Chemistry ² , Stanford University; Howard Hughes Medical Institute ³

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Symposium Poster Session

August 29, 2019 Posters are alphabetized by the last name of the presenter. Presenters' names are listed in bold.

STANFORD BIO-X GRADUATE STUDENTS, POSTDOCS, FACULTY, AND RESEARCHERS

POSTER #	TITLE	AUTHORS
66	Full Optogenetic Control of Human Cardiomyocytes and Engineered Heart Muscle	Oscar J. Abilez ^{1,2,3,4} , Yan Zhuge ² , Bhagat Patlolla ^{2,6} , Charu Ramakrishnan ^{7,9} , Joshua Baugh ¹ , Elina Tzatzalos ² , Paul Chang ⁶ , Huaxiao Yang ² , Kitchener D. Wilson ² , Ramin E. Beygui ^{1,2,6} , Christopher K. Zarins ^{1,2,5} , Ellen Kuhl ^{1,2,6,10} , Karl Deisseroth ^{1,7,8,9} , Joseph C. Wu ^{1,2,3,4,8} Stanford Bio-X ¹ , Stanford Cardiovascular Institute ² , Institute for Stem Cell Biology & Regenerative Medicine ⁸ , and Departments of
		Medicine ³ , Cardiovascular Medicine ⁴ , Surgery ⁵ , Cardiothoracic Surgery ⁶ , Psychiatry & Behavioral Sciences ⁷ , Bioengineering ⁹ , and Mechanical Engineering ¹⁰ , Stanford University
67	High-Throughput Cultivation of Stable, Diverse, Fecal- Derived Microbial Communities to Model the Intestinal Microbiota	 Andrés Aranda-Díaz¹, Katharine Ng¹, Tani Thomsen¹, Imperio Real Ramírez¹, Dylan Dahan², Susannah Dittmar¹, Taylor Chavez¹, Feiqiao Brian Yu³, Norma Neff³, Justin Sonnenburg^{2,3}, Kerwyn Casey Huang^{2,3} Departments of Bioengineering¹ and Microbiology & Immunology², Stanford University; Chan Zuckerberg Biohub³
68	Phase Behavior in Polyelectrolyte Complex Coacervates Mediated by Local Polarity and Polymer Composition	Junzhe Lou ^{1,2} , Kayla Barker ¹ , Sean Friedowitz ² , Karis Will ¹ , Jian Qin ³ , Yan Xia ¹ Departments of Chemistry ¹ , Materials Science & Engineering ² , and Chemical Engineering ³ , Stanford University
69	Semi-Automated Assessment of Mitochondrial Function and Oxidative Stress in Primary Neuronal Cultures	Anvee Bhutani ¹ , Anees Mohideen ¹ , Brian Griffiths ¹ , Xiaoyun Sun ¹ , Creed Stary ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
70	Dynamic Versus Static Stretching as a Pre-Workout Injury Prevention Strategy	Nick Bianco ¹ , Mary Hall ¹ , Emily Tucci ¹ , Scott Delp ^{1,2,3} Departments of Mechanical Engineering ¹ , Bioengineering ² , and Orthopaedic Surgery ³ , Stanford University
71	Microfluidic Guillotine Reveals Multiple Mechanisms and Time Scales of Single-Cell Wound Repair	Lucas R. Blauch ¹ , Kevin Zhang ¹ , Seth Cordts ¹ , Wallace Marshall ² , Sindy K. Y. Tang ¹ Department of Mechanical Engineering ¹ , Stanford University; Department of Biochemistry & Biophysics ² , University of California—San Francisco
72	Biodegradation of Plastic Waste by Mealworms: Preventing Pollution and Recovering Resources	 Anja Malawi Brandon¹, Wei-Min Wu¹, Craig S. Criddle¹ Department of Civil & Environmental Engineering¹, Stanford University
73	Salmonella Typhi Utilizes an RNA Thermosensor to Regulate Virulence Factors and Evade Innate Immune Responses	Susan Brewer ¹ , Jens Kortmann ² , Christian Twittenhoff ³ , Sky Brubaker ¹ , Franz Narberhaus ³ , Denise Monack ¹

		Department of Microbiology & Immunology ¹ , Stanford University; Genentech, Inc. ² ; Microbial Biology ³ Ruhr University
74	No printing needed - emailed - confirmed **submitted by Jennifer Brophy 7/10 at 7:08 PM - brophy@stanford.edu Engineering Plant Root Structure Using Synthetic Developmental Regulation	Jennifer A. N. Brophy ^{1,2} , Katie M. Magallon ^{1,2} , José R. Dinneny ^{1,2} Department of Biology ¹ , Stanford University; Department of Plant Biology ² , Carnegie Institution for Science
75	Microfluidic Platform for Quantifying Food Allergy Severity	Nicolas Castaño ¹ , Seth Cordts ¹ , Fengjiao Lyu ¹ , Bryan Bunning ² , Kari Nadeau ² , Sindy Tang ¹ Departments of Mechanical Engineering ¹ and Allergy & Immunology ² , Stanford University
76	MicroRNA-494 Regulates Fibroproliferative Transformation of Muller Glial Cells	Georgia Kaidonis ^{1,2} , Heather Chang ² , Prisha Davda ² , Xiaoyun Sun ² , Theodore Leng ¹ , Creed Stary ² Departments of Ophthalmology ¹ and Anesthesiology, Perioperative & Pain Medicine ² , Stanford University
77	Identification of MicroRNA-494 as a Potential Therapeutic Target for Epiretinal Membrane Formation	Georgia Kaidonis ^{1,2} , Prisha Davda ² , Heather Chang ² , Xiaoyun Sun ² , Theodore Leng ¹ , Creed Stary ² Departments of Ophthalmology ¹ and Anesthesiology, Perioperative & Pain Medicine ² , Stanford University
78	Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing	Eilon Sharon ¹ , Shi-An A. Chen ¹ , Neil M. Khosla ¹ , Hunter B. Fraser ¹ Department of Biology ¹ , Stanford University
79	Isoflurane, Unlike Propofol, Increases Reactive Aldehyde Metabolism in Both Wild Type Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) and ALDH2*2 Rodents	Monika Chowaniec ¹ , Didi Goodnough ¹ , Adriana Gardner ¹ , Pritam Sinharoy ¹ , Eric Gross ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
80	Ionic and Non-Ionic Clinical Contrast Agents and Their Effects on the Swelling Behavior of Sheep Meniscus Fibrocartilage	Hollis A. Crowder ¹ , Christina Martin ¹ , E. Gaby Baylon ² , Marc Levenston ^{1,3} Departments of Mechanical Engineering ¹ and Radiology ³ , Stanford University; Department of Orthopaedic Surgery ² , University of California– San Francisco
81	Defining the Contribution of T Cells to the Pathogenesis of Coronary Atherosclerosis	Jessica D'Addabbo ¹ , Roshni Chowdhury ² , Xianxi Huang ¹ , Houyin Zhang ¹ , David Louis ² , Stefan Veizades ² , Su Yu ¹ , Jack Boyd ³ , Joseph Woo ³ , Charles Chan ⁴ , Yueh-hsiu Chien ² , Mark Davis ² , Patricia Nguyen ^{1,2,5} Stanford Cardiovascular Institute ¹ , Institute for Immunity, Transplantation & Infection ² , and Departments of Cardiothoracic Surgery ³ , Surgery (Division of Plastic Surgery) ⁴ , and Medicine (Division of Cardiovascular Medicine) ⁵ , Stanford University
82	OpenSim Moco: Musculoskeletal Optimal Control	Christopher L. Dembia ¹ , Nicholas A. Bianco ¹ , Antoine Falisse ² , Jennifer L. Hicks ² , Scott L. Delp ^{1,3} Departments of Mechanical Engineering ¹ and Bioengineering ³ , Stanford University; Department of Movement Sciences ² , KU Leuven, Belgium
83	MicroRNA Controls over Corticospinal Motor Neuron Development	Jessica L. Diaz ¹ [†] , Verl B. Siththanandan ¹ [†] , Victoria Lu ¹ [†] , Jessica L. MacDonald ⁷ , Nicole Gonzalez-Nava ^{1,2} , Lincoln Pasquina ^{4,5,6} , Peter Sarnow ³ , Theo Palmer ¹ , Jeffrey D. Macklis ^{4,5,6} *, Suzanne A. Tharin ¹ * (†co-first authors; *equal contribution and corresponding authors) Departments of Neurosurgery ¹ and Microbiology & Immunology ³ , Stanford University; Department of Biostatistics & Bioinformatics ² , Duke

		University; Department of Stem Cell &
		Regenerative Biology ⁴ , Center for Brain Science ⁵ ,
		University: Department of Biology (Program in
		Neuroscience) ⁷ . Svracuse University
		Sarah E. Divel ^{1,2} , Søren Christensen ³ , Maarten G.
		Lansberg ^{3,4} , Norbert J. Pelc ^{2,5}
84	Simulation of Contrast Agent Dynamics in Digital Brain Phantom for CT	Departments of Electrical Engineering ¹ ,
04	Perfusion Optimization	Radiology ² , Neurology & Neurological
		Sciences ⁴ , and Bioengineering ⁵ and Stanford
		Stroke Center ³ , Stanford University
		Melody Dong ² , weiguang Yang ² , Mariene Pahinovitah ² Joffroy Ecinstein ^{1/2} Alicon
85	Pulmonary Artery Hemodynamic Changes in Pediatric Patients with	Marsden ^{1,2}
05	Ventricular Septal Defects	Departments of Bioengineering ¹ and Pediatric
		Cardiology ² . Stanford University
		Anna Elleman ¹ , Christopher Makinson ² , Alli
07	Exploiting Saxitoxin Coumarin Photocages for Voltage-Gated Sodium	Haynes ¹ , John Huguenard ² , Justin DuBois ¹
86	Channel Control	Departments of Chemistry ¹ and Neurology &
		Neurological Sciences ² , Stanford University
		Michael Fanton ¹ , Jake Sganga ² , David
87	Vulnerable Locations on the Head to Brain Injury and Implications For	Camarillo ^{1,2}
- •	Helmet Design	Departments of Mechanical Engineering ¹ and
		Divengineering ⁻ , Stanford University Vincent Sferra ¹ Abtziri Eonsoca ² Ellen War a ²
		Michael Khoury ² Nicole Neiman ² Maria
		Menendez ²
88	It's Not Just Fun and Games: A Qualitative Review of the Most Utilized	Department of Microbiology & Immunology ¹ ,
	Virtual Reality Games in Pediatric Healthcare	Miami University; Department of Anesthesiology,
		Perioperative, & Pain Medicine ² , Lucile Packard
		Children's Hospital, Stanford University
		Amir M. Foudeh ¹ , Vittorio Mottini ¹ , Yasser
89	Detection of Stress Hormone in Sweat for Wearable Application	Khan ¹ , Emilie Peres ¹ , Kelly Liu ¹ , Zhenan Bao ¹
	11	Department of Chemical Engineering ¹ , Stanford
		Dine Friedborg ¹ Clea Sarnquist ² Gavin
		Nyairo ³ Mary Amuyunzu-Nyamongo ³ Mike
	Spatial Statistics for Violence Prevention – Understanding Patterns of	Bajocchi ^{1,4}
90	Violence in Nairobi through GPS Data	Departments of Statistics ¹ and Pediatrics ² and
	Ŭ	Prevention Research Center ⁴ , Stanford University;
		African Institute for Health and Development ³
		Theodore Z. Gao ¹ , Zehao Sun ^{2,3} , Xuzhou Yan ^{2,4} ,
		Zhenan Bao ²
		Departments of Materials Science & Engineering
91	Engineering Polymer Conformation for Efficient Carbon Nanotube	and Chemical Engineering ² Stanford University
71	Sorting	College of Chemistry & Molecular Engineering ³
		Peking University; Department of Polymer
		Science & Engineering ⁴ , Shanghai Jiao Tong
		University
	Using Toxins to Explore Allosteric Regulation of Voltage-Gated Sodium	Catherine E. Garrison ¹ , Robert A. Craig II ¹ ,
92	Channels	Tim M. MacKenzie ¹ , Justin Du Bois ¹
		Department of Chemistry ¹ , Stanford University
		Julieta Gomez-Frittelli ¹ , Stephan Rogalla ^{2,3} ,
		Julia A. Kaltschmidt
93	Investigating Spinal-Enteric Neural Circuitry in the Mouse Colon	Radiology ² and Neurosurgery ⁴ and Molecular
		Imaging Program at Stanford (MIPS) ³ Stanford
		University
		Colin Grant ^{1,2} , Gozde Durmus ^{3,4}
	Disastania Depline of Circulation The Colling in March	Canary Center at Stanford for Cancer Early
94	Levitation Panking Outometry	Detection ¹ , Canary CREST Program ² , Department
	Levitation Ranking Cytometry	of Radiology ³ , and Molecular Imaging Program at
		$C_{4} = \frac{1}{2} (MDC)^4$ $C_{4} = \frac{1}{2} L_{1} = \frac{1}{2} L_{1}$

95	Single Cell Radiometry Using Droplet Optofluidics	Byunghang Ha ¹ , Tae Jin Kim ² , Ejung Moon ² , Guillem Pratx ² Departments of Mechanical Engineering ¹ and Radiation Oncology ² , Stanford University
96	Whole Brain Seizure Networks at Single Cell Resolution	Darian H. Hadjiabadi ^{1,2} , Matthew Lovett- Barron ¹ , Ivan Raikov ² , Scott. C. Baraban ⁴ , Jure Leskovec ³ , Karl Deisseroth ¹ , Ivan Soltesz ² Departments of Bioengineering ¹ , Neurosurgery ² , and Computer Science ³ , Stanford University; Department of Neurological Surgery ⁴ , University of California—San Francisco
97	The Murine Transcriptome in 17 Tissues: Uncovering Global Ageing Nodes with Organ-Specific Phase and Amplitude	Oliver Hahn ^{1,3*} , Nicholas Schaum ^{1,3*} , Benoit Lehallier ^{1*} , Patricia Losada ¹ , Andreas Keller ⁴ , <i>Tabula Muris</i> Consortium ⁵ , Stephen Quake ^{2,5,8} , Tony Wyss-Coray ^{1,3,6,7,8} (*co-first authors) Departments of Neurology & Neurological Sciences ¹ and Bioengineering ² , Paul F. Glenn Center for the Biology of Aging ⁶ , Stanford ChEM-H ⁷ , and Stanford Bio-X ⁸ , Stanford University; Center for Tissue Regeneration, Repair, & Restoration ³ , VA Palo Alto Health Care System; Center for Bioinformatics ⁴ , Saarland University; Chan Zuckerberg Biohub ⁵
98	Development of Saxitoxin-Based, Subtype-Selective Tools for Studying Voltage-Gated Sodium Channels	Holly S. Hajare ¹ , Doris T. Y. Tang ¹ , Rhiannon Thomas-Tran ¹ , Jay M. Liu ¹ , Justin Du Bois ¹ Department of Chemistry ¹ , Stanford University
99	Engineering a Rodent TRPV1 Receptor with Qualities of the Chicken Modulate Calcium Influx and Mitochondrial Function	Shufang He ¹ , Vanessa O. Zambelli ¹ , Pritam Sinharoy ¹ , Yang Bian ¹ , Eric R. Gross ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
100	"I Like to Move It, Move It" - Design Considerations for Implementing and Calibrating a Mobile Virtual Physical Therapy Platform	Rodriguez ¹ , Thomas J. Caruso ¹ Department of Anesthesiology, Perioperative, & Pain Medicine ¹ , Lucile Packard Children's Hospital, Stanford University
101	No Pain, Just Game: Physical Therapy with Virtual Reality in the Inpatient and Outpatient Setting - A Case Series	Alan Nguyen ¹ , Sydney Hemphill ¹ , Samuel Rodriguez ¹ , Maria Menendez ¹ , Thomas J. Caruso ¹ Department of Anesthesiology, Perioperative, & Pain Medicine ¹ , Lucile Packard Children's Hospital, Stanford University
102	Structural Basis of Glucose-6-Phosphate Dehydrogenase Deficiency	Naoki Horikoshi ^{1,2,3} , Sunhee Hwang ⁴ , Fatemeh Jabbarpour ^{2,3} , Andrew G. Raub ⁴ , Cornelius Gati ^{2,3} , Tsutomu Matsui ⁵ , Adriana A. Garcia ⁴ , Josh Broweleit ³ , Xinyu Xiang ³ , Andrew Chiang ³ , Rachel Broweleit ³ , Daria Mochly-Rosen ⁴ , Soichi Wakatsuki ^{2,3} Life Science Center for Survival Dynamics ¹ , University of Tsukuba; BioSciences Division ² and Stanford Synchrotron Radiation Lightsource ⁵ , SLAC National Accelerator Laboratory; Departments of Structural Biology ³ and Chemical & Systems Biology ⁴ , Stanford University
103	TextureNet: Consistent Local Parametrizations for Learning from High- Resolution Signals on Meshes	Jingwei Huang ¹ , Haotian Zhang ¹ , Li Yi ¹ , Thomas Funkhouser ² , Matthias Niessner ³ , Leonidas Guibas ¹ Department of Computer Science ¹ , Stanford University; Department of Computer Science ² , Princeton University; Department of Computer Science ³ , Technical University of Munich

104	High-Throughput Measurements of Red Blood Cell Deformation in Microfluidic Channels	Diego A. Huyke ¹ , Diego I. Oyarzun ¹ , Amir Saadat ² , Paulina V. Escobar ³ , Ingrid H. Øvreeide ⁴ , Eric S.G. Shaqfeh ² , Juan G. Santiago ¹ Departments of Mechanical Engineering ¹ and Chemical Engineering ² , Stanford University; Department of Mechanical Engineering ³ , Pontificia Universidad Católica de Chile; Department of Physics ⁴ , Norwegian University of Science & Technology
105	Enabling Safe and Real-Time Ultrasound Molecular Imaging for Early Cancer Detection Using Beamforming Neural Networks	Dongwoon Hyun ¹ , Rakesh Bam ¹ , Leandra L. Brickson ² , Lotfi Abou-Elkacem ³ , Ramasamy Paulmurugan ¹ , Jeremy J. Dahl ¹ Departments of Radiology ² and Bioengineering ² , Stanford University; MD Anderson Cancer Center ³
106	Heuristic-Based Exoskeleton Control for Co-Adaptive Locomotor Assistance	Rachel W. Jackson ^{1,2} , Scott L. Delp ^{2,3,4} , Steven H. Collins ^{1,3} Department of Mechanical Engineering ¹ , Carnegie Mellon University; Departments of Bioengineering ² , Mechanical Engineering ³ , and Orthopaedic Surgery ⁴ , Stanford University
107	Ketamine Produces a Long-Lasting Enhancement of Synaptic Transmission	Grace Jang ¹ , M. Bruce MacIver ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
108	Cardiometabolic Disease Progression Studies in UK Biobank	Johanne Marie Justesen ^{1,2} , Yosuke Tanigawa ¹ , Robert Tibshirani ^{1,3} , Trevor Hastie ^{1,3} , Manuel Rivas ¹ Departments of Biomedical Data Science ¹ , Cardiovascular Medicine ² , and Statistics ³ , Stanford University
109	A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Imaging	Leeat Keren ¹ , Marc Bosse ¹ , Allison Kurian ¹ , David Van Valen ^{2,3} , Robert West ¹ , Sean C. Bendall ¹ , Michael Angelo ¹ Department of Pathology ¹ , Stanford University; Departments of Biology ² and Bioengineering ³ , Caltech
110	Positron Emission Microscopy in Cancer Precision Medicine	Syamantak Khan ¹ , JuneHo Shin ² , Ning Cheng ³ , Calvin Kuo ³ , John B. Sunwoo ² , Guillem Pratx ¹ Departments of Radiation Oncology ¹ , Otolaryngology ² , and Medicine (Division of Hematology) ³ , Stanford University
111	Pebbles the Penguin TM "Nose" Best: The Use of Virtual Reality to Promote Cooperation and Reduce Anxiety During Pediatric ENT Procedures - A Randomized Controlled Trial	Michael Khoury ¹ , Madison Kist ¹ , Martine Madill ¹ , Katherine Taylor ¹ , Ahtziri Fonseca ¹ , Maria Menendez ¹ , Douglas Sidell ² , Kara D. Meister ² , Ellen Wang ¹ , Samuel Rodriguez ¹ , Thomas J. Caruso ¹ Departments of Anesthesiology, Perioperative, & Pain Medicine ¹ and Otolaryngology - Head & Neck Surgery ² , Lucile Packard Children's Hospital, Stanford University
112	Augmented Reality as a Tool to Reduce Fear and Promote Cooperation During Pediatric Nasal Endoscopy	Martine Madill ¹ , Michael Khoury ¹ , Thomas J. Caruso ¹ , Douglas Sidell ² , Kara D. Meister ² , Ellen Wang ¹ , Maria Menendez ¹ , Samuel Rodriguez ¹ Departments of Anesthesiology, Perioperative, & Pain Medicine ¹ and Otolaryngology - Head & Neck Surgery ² , Lucile Packard Children's Hospital, Stanford University
113	Interaction with Ubiquitous Robots through Abstract Motion and Touch	Lawrence H. Kim ¹ , Sean Follmer ¹ Department of Mechanical Engineering ¹ , Stanford University
114	Uncovering the Fitness-Relevant Phenotypes of Microbes Adapting to Novel Environments	Grant Kinsler ¹ *, Kerry Geiler-Samerotte ² *, Dmitri Petrov ¹

		(*equal contribution) Department of Biology ¹ , Stanford University; Center for Mechanisms of Evolution ² , Arizona State University
115	Myelination of Individual Mouse Neocortical Parvalbumin Interneurons	Marianna Kiraly ¹ , Kristina Micheva ¹ , Mark Perez ¹ , Daniel Madison ¹ Department of Molecular & Cellular Physiology ¹ , Stanford University
116	"Cast Off" Pain and Anxiety with Technology-Based Distractions during Minor Surgical Procedures in Pediatric Outpatient Orthopedic Clinic	Madison Kist ¹ , Nicole Neiman ¹ , Hal Rives ¹ , Katherine Hastings ² , Maria Menendez ¹ , Ellen Wang ¹ , Samuel Rodriguez ¹ , Thomas J. Caruso ¹ Departments of Anesthesiology, Perioperative, & Pain Medicine ¹ and Orthopaedic Surgery ² , Lucile Packard Children's Hospital, Stanford University
117	Validating a Novel Scale for Assessing Patient Anxiety, Behavior, and Cooperation During Mask Induction of Anesthesia and IV Placement	Madison Kist ¹ , Michael Khoury ¹ , Maria Menendez ¹ , Ellen Wang ¹ , Samuel Rodriguez ¹ , Thomas J. Caruso ¹ Department of Anesthesiology, Perioperative, & Pain Medicine ¹ , Lucile Packard Children's Hospital, Stanford University
118	A Mixed-Reality Application for Visualizing Patient Anatomy and Planning Thoracic Surgery	Brooke Krajancich ¹ , Stephanie L. Perkins ^{2,3} , Brian A. Hargreaves ^{1,3} , Bruce L. Daniel ^{1,2} , Chi-Fu Jeffrey Yang ⁴ , Mark F. Berry ⁴ Departments of Electrical Engineering ¹ , Bioengineering ² , Radiology ³ , and Cardiothoracic Surgery ⁴ , Stanford University
119	Imaging Brain Function with Simultaneous BOLD and Viscoelasticity Contrast: fMRI/fMRE	Patricia S. Lan ¹ , Kevin J. Glaser ² , Richard L. Ehman ² , Gary H. Glover ³ Departments of Bioengineering ¹ and Radiology ³ , Stanford University; Department of Radiology ² , Mayo Clinic
120	Subcellular Omics Approach to Study Lysosomal Function in Health and Disease	Nouf Laqtom ^{1,2} , Monther Abu-Remaileh ^{1,2,3} Departments of Chemical Engineering ¹ and Genetics ³ and Institute of Chemistry, Engineering & Medicine for Human Health (ChEM-H) ² , Stanford University
121	Lights, Camera, Action: Virtual Reality Versus Live Simulation for Medical Education	Katherine Taylor ¹ , Kiley Lawrence ¹ , Martine Madill ¹ , Sydney Hemphill ¹ , Emma Armstrong- Carter ¹ , Maria Menendez ¹ , Asheen Rama ¹ , Ellen Wang ¹ , Samuel Rodriguez ¹ , Thomas J. Caruso ¹ Department of Anesthesiology, Perioperative, & Pain Medicine ¹ , Lucile Packard Children's Hospital, Stanford University
122	Uncharacterized Protein MAB21L4 Is Required for Epidermal Differentiation and Suppression of Cancer Invasion	Cristina Tommasi ¹ , Dane Sessions ¹ , Angela Mah ¹ , Jasmine Garcia ¹ , Michael Lee ¹ , Brittany Stinson ¹ , Tomas Bencomo ¹ , Kenneth Tsai ^{3,4} , Vanessa Lopez-Pajares ¹ , Carolyn Lee ^{1,2} Department of Dermatology ¹ and VA Palo Alto Health Care System ² , Stanford University; Departments of Anatomic Pathology ³ and Tumor Biology ⁴ , H. Lee Moffitt Cancer Center & Research Institute
123	Building the Fly Olfactory System: Insights From Single Cell Analysis	Hongjie Li ^{1,2} , Felix Horns ^{3,4} , Tongchao Li ^{1,2} , Jiefu Li ^{1,2} , Qijing Xie ^{1,2} , Chuanyun Xu ^{1,2} , Bing Wu ^{1,2} , Justus M. Kebschull ^{1,2} , David Vacek ^{1,2} , Anthony Xie ^{1,2} , David J. Luginbuhl ^{1,2} , Stephen R. Quake ^{3,4,5} , Liqun Luo ^{1,2} Departments of Biology ¹ , Bioengineering ³ , and Applied Physics ⁴ and Howard Hughes Medical Institute ² , Stanford University; Chan Zuckerberg Biohub ⁵
124	Octopi: Open, Configurable High-Throughput Imaging Platform for Diagnostics and Research	Hongquan Li ¹ , Lucas Fuentes Valenzuela ¹ , Maxime Voisin ² , Hazel Soto-Montoya ³ , Ethan Li ³ , Manu Prakash ³

		Departments of Electrical Engineering ¹ , Computer Science ² , and Bioengineering ³ , Stanford University
125	Cell-Surface Proteomic Landscape of Developing and Mature Olfactory Neurons	Jiefu Li ^{1,2} , Shuo Han ^{1,3,4} , Hongjie Li ^{1,2} , Namrata D. Udeshi ⁸ , Tanya Svinkina ⁸ , D. R. Mani ⁸ , Chuanyun Xu ^{1,2} , Ricardo Guajardo ^{1,2} , Qijing Xie ^{1,2} , Tongchao Li ^{1,2} , Bing Wu ^{1,2} , Anthony Xie ^{1,2} , David J. Luginbuhl ^{1,2} , Pornchai Kaewsapsak ^{1,3,4} , Stephen R. Quake ^{5,6,7} , Steven A. Carr ⁸ , Alice Y. Ting ^{1,3,4} , Liqun Luo ^{1,2} Departments of Biology ¹ , Genetics ³ , Chemistry ⁴ , Bioengineering ⁵ and Applied Physics ⁶ , Howard Hughes Medical Institute ² , and Chan Zuckerberg Biohub ⁷ , Stanford University; The Broad Institute of MIT and Harvard ⁸
126	Single Nucleotide Mapping of the Locally Accessible Trait Space in Yeast Reveals Pareto Fronts that Constrain Initial Adaptation	Yuping Li ¹ , Dmitri A. Petrov ^{1*} , Gavin Sherlock ^{2*} (*equal contribution) Departments of Biology ¹ and Genetics ² , Stanford University
127	3D-Bioprinted Lattices for Efficient Expansion of Neural Progenitor Cells	Christopher D. Lindsay ¹ , Julien G. Roth ² , Bauer L. LeSavage ³ , Sarah C. Heilshorn ¹ Departments of Materials Science & Engineering ¹ and Bioengineering ³ and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
128	Attention and Working Memory in Mental Illness: Experimental Design and Preliminary Results	Ruth Ling ^{1**} , Arielle S. Keller ^{1*} , Bailey Holt- Gosselin ¹ , Leanne M. Williams ¹ (*equal contribution) Department of Psychiatry & Behavioral Sciences ¹ Stanford University
129	Dynamics of Developmental Strategies That Drive Cell Identity and Plasticity	Camila Lopez-Anido ¹ , Dominique Bergmann ^{1,2} Department of Biology ¹ and HHMI ² , Stanford University
130	Engineering and Understanding Dynamic Hyaluronan Hydrogels for 3D Cell Culture and Cell Delivery	Junzhe Lou ^{1,2} , Christopher Lindsay ¹ , Sean Friedowitz ¹ , Jian Qin ³ , Sarah Heilshorn ¹ , Yan Xia ² Departments of Materials Science & Engineering ¹ , Chemistry ² , and Chemical Engineering ³ , Stanford University
131	Dosimetry Challenges in FLASH Radiotherapy of Small Animal	Rakesh Manjappa ¹ , Jinghui Wang ¹ , Karen Levy ² , Lawrie Skinner ¹ , Emil Schueler ¹ , Edward Graves ¹ , Karl Bush ¹ , Shu-Jung Yu ¹ , Erinn B. Rankin ² , Peter G. Maxim ³ , Billy W. Loo Jr. ¹ Departments of Radiation Oncology ¹ and Gynecologic Oncology ² , Stanford University; Department of Radiation Oncology ³ , Indiana University
132	3D Printed Radiation Shield for Mouse Irradiation Studies Using Clinical Linac Accelerators	Jinghui Wang ¹ , Rakesh Manjappa ¹ , Karen Levy ² , Lawrie Skinner ¹ , Emil Schueler ¹ , Edward Graves ¹ , Karl Bush ¹ , Shu-Jung Yu ¹ , Erinn B. Rankin ² , Peter G. Maxim ³ , Billy W. Loo Jr. ¹ Departments of Radiation Oncology ¹ and Gynecologic Oncology ² , Stanford University; Department of Radiation Oncology ³ , Indiana University
133	Clog-Free Sorting Using Hydrodynamic Obstacles	Endre J. Mossige ¹ , Arnold J.T.M. Mathijssen ² , Michaela Hinks ² , Sasha Zemsky ² , Zachary Sexton ² , Prima Sinawang ² , Ana Uriarte ² , Chunzi Liu ¹ , Polly Fordyce ² Departments of Chemical Engineering ¹ and Bioengineering ² , Stanford University
134	Membrane and Fluid Contactors for Safe and Efficient Methane Delivery in Methanotrophic Bioreactors	Jorge Luis Meraz ¹ , Kristian L. Dubrawski ¹ , Sahar H. El Abbadi ¹ , Kwang Ho-Choo ² , Craig Criddle ¹

		Department of Civil & Environmental Engineering ¹ , Stanford University; Department of Environmental Engineering ² , Kyungpook National University
135	A Data-Compressive Wired-OR Readout for Massively Parallel Neural Recording	Dante Muratore ^{1,2} , Pulkit Tandon ¹ , Mary Wootters ^{2,3} , E. J. Chichilnisky ^{4,5,6} , Subhasish Mitra ^{1,3} , Boris Murmann ¹ Departments of Electrical Engineering ¹ , Computer Science ³ , Neurosurgery ⁴ , and Ophthalmology ⁵ , Wu Tsai Neurosciences Institute ² , and Hansen Experimental Physics Laboratory ⁶ , Stanford University
136	Neural Predictors of Cognitive Training Outcomes in Mild Cognitive Impairment: Pilot Study	Shayan Nazarifar ^{1,2} , Jacob Shaw ¹ , Elveda Gozdas ¹ , Hannah Fingerhut ¹ , Hadi Hosseini ¹ Department of Psychiatry & Behavioral Sciences ¹ , Stanford University; Program in Biology ² , University of California—Davis
137	Trust Your Gut with Virtual Reality Mindfulness	Nicole Neiman ¹ , Martine Madill ¹ , Katherine Taylor ¹ , Hal Rives ¹ , Maria Menendez ¹ , Ellen Wang ¹ , Samuel Rodriguez ¹ , Thomas J. Caruso ¹ , Anava Wren ² Department of Anesthesiology, Perioperative, & Pain Medicine ¹ and Pediatrics (Division of Gastroenterology, Hepatology & Nutrition) ² , Lucile Packard Children's Hospital, Stanford University
138	Simon Says Freeze: Quantifying Virtual Reality Pain Modulation in Healthy Volunteers through Ice Immersion	Hal Rives ¹ , Alan Nguyen ¹ , Nicole Neiman ¹ , Kiley Lawrence ¹ , Katherine Taylor ¹ , Ellen Wang ¹ , Samuel Rodriguez ¹ , Thomas J. Caruso ¹ Department of Anesthesiology, Perioperative, & Pain Medicine ¹ , Lucile Packard Children's Hospital Stanford University
139	Is DWI Equal to PET in the Evaluation of Langerhans Cell Histiocytosis?	Ramyashree Nyalakonda ¹ , Anne M. Muehe ¹ , Florian Siedek ¹ , Ashok J. Theruvath ¹ , Michael Jeng ² , Heike E. Daldrup-Link ¹ Departments of Radiology ¹ and Pediatrics ² , Stanford University
140	PEGASuS: PEG Assembled Surface Sensor for Breast Cancer Exosome Detection	Mehmet Giray Ogut ^{1,2,3} , Mehmet O. Ozen ^{1,2,3} , Abel Bermudez ^{2,3} , Fernando J. García Marqués ^{2,3} , Mark A. Lifson ^{1,2,3} , Sharon Pitteri ^{2,3} , Utkan Demirci ^{1,2,3} Bio-Acoustic MEMS in Medicine (BAMM) Laboratory ¹ , Canary Center at Stanford for Cancer Early Detection ² , and Department of Radiology ³ , Stanford University
141	Preictal Estimation via Intracranial Electrophysiology in People with Refractory Epilepsy	Tomiko Oskotsky ^{1,2} , Lisa Yamada ³ , Jaimie Henderson ^{2,4,5,6} , Gerald Grant ^{2,4,5,6,7,8} , Kevin Graber ⁴ , Brenda Porter ^{4,5,6,7} , Paul Nuyujukian ^{1,2,3,5,6,9} Departments of Bioengineering ¹ , Neurosurgery ² , Electrical Engineering ³ , and Neurology & Neurological Sciences ⁴ , Wu Tsai Neurosciences Institute ⁵ , Stanford Bio-X ⁶ , Child Health Research Institute ⁷ , Stanford Cancer Institute ⁸ , and Neurosciences Program ⁹ , Stanford University
142	Single-Cell Profiling of Human Neurons with Neurofibrillary Tangles in Alzheimer's Disease	Marcos Otero-Garcia ¹ , Yue-Qiang Xue ¹ , Tamara Shakouri ² , Yongning Deng ^{2,3} , Sam Morabito ^{4,5} , Riki Kawaguchi ^{6,7} , Vivek Swarup ^{5,8} , Inma Cobos ¹ Department of Pathology ¹ , Stanford University; Departments of Pathology ² and Psychiatry ⁶ and Semel Institute for Neuroscience & Human Behavior ⁷ , University of California—Los Angeles; Department of Neurology ³ , The First

		Affiliated Hospital of Xi'an Jiaotong University, China; Mathematical, Computational & Systems Biology (MCSB) Program ⁴ , Institute for Memory Impairments & Neurological Disorders (MIND) ⁵ , and Department of Neurobiology & Behavior ⁸ , University of California—Irvine
143	Linking Nerve Stimuli to Perception through Mechanoreceptors in Human Skin	Joseph Pace ¹ , Omar Safty ¹ , Christopher Berkey ¹ , Ross Bennett-Kennett ¹ , Reinhold H. Dauskardt ¹ Department of Materials Science & Engineering ¹ , Stanford University
144	Overcoming the Aged Niche to Improve Skeletal Muscle Regeneration	Adelaida R. Palla ¹ , Andrew T.V. Ho ¹ , Glenn Markov ¹ , Nora Yucel ¹ , Colin A. Holbrook ¹ , Ann V. Yang ¹ , Peggy Kraft ¹ , Helen M. Blau ¹ Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology ¹ , Stanford University
145	Pathway and Network Embedding Methods for Prioritizing Psychiatric Drugs	Yash Pershad ¹ , Margaret Guo ² , Russ B. Altman ^{3,4} Departments of Bioengineering ¹ , Genetics ³ , and Medicine ⁴ and Biomedical Informatics Program ² , Stanford University
146	FFPE-CODEX Enables Multiparameter Tissue Imaging of Clinical Cohorts	Darci Phillips ¹ , Christian Schuerch ¹ , Graham Barlow ¹ , Salil Bhate ¹ , Yury Goltsev ¹ , Garry Nolan ¹ Department of Microbiology & Immunology ¹ , Stanford University
147	Modeling Attention Impairments in Major Depression Disorder	Helen Qiu ^{1*} , Jason Li ^{1*} , Arielle S. Keller ¹ , Leanne M. Williams ¹ (*equal contribution) Department of Psychiatry & Behavioral Sciences ¹ , Stanford University
148	Interfacea: Open-Source Library for Protein Interface Analysis	João Rodrigues ¹ , Michael Levitt ¹ Department of Structural Biology ¹ , Stanford University
149	Propensity Score Methods for Merging Observational and Experimental Data	Evan Rosenman ¹ , Art Owen ¹ , Michael Baiocchi ² Department of Statistics ¹ and Prevention Research Center ² , Stanford University
150	Real-Time Kinetics of Notch-Mediated Fate Decisions During Organ Renewal	Erin N. Sanders ^{1,2} , Judy Martin ¹ , Andrew Labott ¹ , Lucy Erin O'Brien ¹ Departments of Molecular & Cellular Physiology ¹ and Developmental Biology ² , Stanford University
151	Computational Modeling of the Biochemical and Biomechanical Degeneration in Alzheimer's Disease	A. Schäfer ¹ , Johannes Weickenmeier ² , Ellen Kuhl ¹ Department of Mechanical Engineering ¹ , Stanford
152	Electrocatalytic Sulfur Oxidation in Anaerobic Wastewater Effluents	Xiaohan Shao ¹ , Sebastien Tilmans ² , Craig Criddle ¹ , William Tarpeh ^{1,3} Departments of Civil & Environmental Engineering ¹ and Chemical Engineering ³ and Codiga Resource Recovery Center ² , Stanford University
153	Impaired Immune Health in Survivors of Diffuse Large B-Cell Lymphoma	Tanaya Shree ¹ , Qian Li ² , Sally L. Glaser ³ , Ann Brunson ² , Holden T. Maecker ⁴ , Robert W. Haile ⁵ , Theresa H.M. Keegan ² , Ronald Levy ¹ Departments of Medicine ¹ and Microbiology & Immunology ⁴ , Stanford University; Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology & Oncology ² , University of California–Davis; Cancer Prevention Institute of California ³ ; Center for Translational Population Sciences ⁵ , Cedars- Sinai Medical Center
154	Label-Free Imaging of Retinal Cells in the Living Mouse	Nripun Sredar ¹ , Liang Li ¹ , Samuel Steven ^{1,2} , Yang Hu ¹ , Alfredo Dubra ¹

		Department of Ophthalmology ¹ , Stanford University; Institute of Optics ² , University of Rochester
155	Cryo-EM Reveals Novel Structural Insights of the <i>Tetrahymena</i> Ribozyme	Zhaoming Su ¹ , Kalli Kappel ² , Rhiju Das ² , Wah Chiu ^{1,3,4} Departments of Bioengineering ¹ , Biochemistry ² , and Microbiology & Immunology ³ and SLAC National Accelerator Laboratory ⁴ , Stanford University
156	Supervised Fitting of Geometric Primitives to 3D Point Clouds	Lingxiao Li ^{1*} , Minhyuk Sung ^{2*} , Anastasia Dubrovina ² , Li Yi ³ , Leonidas Guibas ² (*equal contribution) Departments of Mathematics ¹ , Computer Science ² , and Electrical Engineering ³ , Stanford University
157	"Neglected Moms" – From Childhood Emotional Neglect to Adjustment to Motherhood	Anat Talmon ¹ Department of Psychology ¹ , Stanford University
158	Ultrasound Parameter Optimization for Microbubble- Mediated Drug Delivery	Arsenii Telichko ¹ , Huaijun Wang ¹ , Sunitha Bachawal ¹ , Rajendran Bose ¹ , Ramasamy Paulmurugan ¹ , Jeremy Dahl ¹ Department of Radiology ¹ , Stanford University
159	Automated Classification of Knee X-Rays Using Deep Neural Networks Outperforms Radiologist	Kevin A. Thomas ¹ , Lukasz Kidzinski ² , Eni Halilaj ³ , Scott L. Fleming ¹ , Guhan R. Venkataraman ¹ , Garry E. Gold ⁴ , Scott L. Delp ² Departments of Biomedical Data Science ¹ , Bioengineering ² and Radiology ⁴ , Stanford University; Department of Mechanical Engineering ³ , Carnegie Mellon University
160	Investigating Viscoelasticity in a Beating Heart	Oguz Ziya Tikenogullari ¹ , Vijay Vedula ² , Francisco Sahli Costabal ¹ , Alison Marsden ^{2,3} , Ellen Kuhl ¹ Departments of Mechanical Engineering ¹ , Pediatrics ² , and Bioengineering ³ , Stanford University
161	Gait Retraining as a Treatment for Medial Knee Osteoarthritis	Scott D. Uhlrich ^{1,5} , Valentina Mazzoli ⁴ , Julie A. Kolesar ^{2,5} , Elka Rubin ⁴ , Amy B. Silder ^{2,5} , Madeleine Z. Berkson ⁵ , Andrea Finlay ⁶ , Feliks Kogan ⁴ , Garry E. Gold ⁴ , Gary S. Beaupre ^{2,5} , Scott L. Delp ^{1,2,3} Departments of Mechanical Engineering ¹ , Bioengineering ² , Orthopaedic Surgery ³ , and Radiology ⁴ , Stanford University; Musculoskeletal Research Laboratory ⁵ and Center for Innovation & Implementation ⁶ , VA Palo Alto Healthcare System
162	Neocortex-Cerebellum Neural Dynamics During Novel Skill Acquisition	Mark J. Wagner ¹ , Tony Hyun Kim ¹ , Jonathan Kadmon ¹ , Nghia D. Nguyen ¹ , Surya Ganguli ¹ , Mark J. Schnitzer ¹ , Liqun Luo ¹ Department of Biology ¹ , Stanford University
163	Viscoelasticity of the Axon Limits Stretch-Mediated Growth	Lucy Wang ¹ , Ellen Kuhl ^{1,2} Departments of Mechanical Engineering ¹ and Bioengineering ² Stanford University
164	Sodium Fluoride PET-MRI Detects Regions of Abnormal Bone Response to Acute Exercise	Lauren Watkins ¹ , Bryan Haddock ² , Scott Ulrich ³ , Valentina Mazzoli ⁴ , Garry Gold ^{1,4} , Feliks Kogan ⁴ Departments of Bioengineering ¹ , Mechanical Engineering ³ , and Radiology ⁴ , Stanford University; Department of Clinical Physiology, Nuclear Medicine & PET ² , Copenhagen University Hospital
165	The Physiologic Characterization of Alcohol Flushing in Human Volunteers	Joe R. White ¹ , Kevin N. Zhou ¹ , Leslie McNeil ¹ , Che-Hong Chen ² , Daria Mochly- Rosen ² , Eric R. Gross ¹

		Departments of Anesthesiology, Perioperative & Pain Medicine ¹ and Chemical & Systems Biology ² , Stanford University
166	Radiation Plus Theranostic Combination Therapy for Targeting Glioblastomas	 Wei Wu^{1,2}†, Jessica L. Klockow^{1,2}†, Suchismita Mohanty^{1,2}, Kimberly S. Ku^{1,2}, Maryam Aghighi^{1,2}, Stavros Melemenidis³, Zixin Chen^{1,2}, Kai Li^{1,2}, Goreti Ribeiro Morais⁴, Ning Zhao^{1,2}, Jürgen Schlegel⁵, Edward E. Graves^{1,2,3}, Jianghong Rao^{1,2}, Paul M. Loadman⁴, Robert A. Falconer⁴, Frederick T. Chin^{1,2}, Heike E. Daldrup- Link^{1,2*} (†co-first authors; *corresponding author) Departments of Radiology¹ and Radiation Oncology³ and Molecular Imaging Program at Stanford (MIPS)², Stanford University; Institute of Cancer Therapeutics (Faculty of Life Sciences)⁴, University of Bradford; Department of Neuropathology⁵, Technical University of Munich
167	Biodegradation of Plastic Wastes and Microplastics in the Larvae of Darkling Beetles (<i>Tenebrio</i> Genus)	Wei-Min Wu ¹ , Ronghua Yu ¹ , Mayuri Namasivayam ¹ , Hazal Kirimli ¹ , Anja Malawi Drevitch Brandon ¹ , Craig S. Criddle ¹ Department of Civil & Environmental Engineering ¹ , Stanford University
168	Building a Single-Cell Co-Transcriptomic Atlas of the <i>Toxoplasma</i> Interactome	 Yuan (Soso) Xue¹, Terence Theisen², Suchi Rastogi², Abel Ferrel², John Boothroyd², Stephen Quake^{1,3,4} Departments of Bioengineering¹, Microbiology & Immunology², and Applied Physics³ and Chan Zuckerberg Biohub⁴, Stanford University
169	Polymer-Nanoparticle Hydrogels as Injectable Antibody Depots	 Anthony C. Yu¹, Gillie Agmon², Awua M. Buahin¹, Eric A. Appel¹ Departments of Materials Science & Engineering¹ and Bioengineering², Stanford University
170	E-Cigarette Aerosol Elevates Cardiovascular Oxidative Stress in ALDH2*2 Variant Mice	 Xuan Yu¹, Xiaocong Zeng¹, Ri Chen¹, Pritam Sinharoy¹, Eric R. Gross¹ Department of Anesthesiology, Perioperative & Pain Medicine¹, Stanford University
171	Mitochondrial Aldehyde Dehydrogenase-2 Modulates Opioid-Induced Tolerance	 Vanessa O. Zambelli¹, Vivianne L. Tawfik¹, Eric R. Gross¹ Department of Anesthesiology, Perioperative & Pain Medicine¹, Stanford University
172	CryoEM Demonstrates that ATP Binding to mmCpn Is Statistically Random	Yanyan Zhao ¹ , Wah Chiu ^{2,3,4} Biophysics Program ¹ , Departments of Bioengineering ² and Microbiology & Immunology ³ , and SLAC National Accelerator Laboratory ⁴ , Stanford University