

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Poster Session

February 26, 2020

Posters are alphabetized by the last name of the presenter.

Presenters' names are listed in bold.

POSTER #	TITLE	AUTHORS
1	A Comprehensive Analysis of Essential Genes Reveals Mutualistic Interactions in <i>B. subtilis</i> Biofilms	Heidi A. Arjes ¹ , Haiwen Gui ¹ , Kerwyn C. Huang ^{1,2} Departments of Bioengineering ¹ and Microbiology & Immunology ² , Stanford University
2	An Atlas of the Elastic Modulus of Soft Organs in Mice Measured at the Nano-Level	Eneko Axpe ^{1,2} , Doreen Chan ¹ , Santiago Correa ¹ , Abigail K. Grosskopf ¹ , Eric A. Appel ¹ Department of Materials Science & Engineering ¹ , Stanford University; Space Biosciences Division ² , NASA-Ames Research Center
3	Interaction of Developmental and Morphological Traits in the Evolutionary History of Plant Physiology	Andrés Baresch ¹ , C. Kevin Boyce ¹ Department of Geological Sciences ¹ , Stanford University
4	Engineering a Live Bacterial Therapeutic for Type 1 Diabetes	Kaisha Benjamin ¹ , John Glass ² , Yo Suzuki ² , Drew Endy ¹ Department of Bioengineering ¹ , Stanford University; Synthetic Biology Group ² , J. Craig Venter Institute
5	Investigating the Biomechanics of Single-Sarcomere Contraction in Stem Cell-Derived Cardiomyocytes	Foster Birnbaum ¹ , Gaspard Pardon ¹ , Helen Blau ¹ Department of Microbiology & Immunology ¹ , Stanford University
6	Spatial Expansions and Serial Bottlenecks Produce Different Topologies of Genealogical Trees	Gabriel Birzu ¹ , Oskar Hallatschek ² , Kirill S. Korolev ³ Department of Applied Physics ¹ , Stanford University; Department of Physics & Integrative Biology ² , University of California, Berkeley; Department of Physics ³ , Boston University
7	T2 Cluster Analysis of ACL-Reconstructed Knees: Detecting Superficial and Deep Changes to Femoral and Tibial Cartilage Over 18-Months Post-Surgery	Marianne S. Black ^{1,2} , Kate Young ² , Akshay S. Chaudhari ² , Feliks Kogan ² , Garry E. Gold ^{2,3,4} , Marc E. Levenston ^{1,2,3} , Brian A. Hargreaves ^{2,3,5} Departments of Mechanical Engineering ¹ , Radiology ² , Bioengineering ³ , Orthopaedic Surgery ⁴ , and Electrical Engineering ⁵ , Stanford University
8	A Neural Network that Predicts the Knee Adduction Moment from the Positions of Anatomical Landmarks	Melissa A. Boswell ¹ , Scott D. Uhlrich ^{2,6} , Łukasz Kidziński ¹ , Kevin Thomas ³ , Julie A. Kolesar ^{1,6} , Garry E. Gold ⁵ , Gary S. Beaupre ^{1,3} , Scott L. Delp ^{1,2,5} Departments of Bioengineering ¹ , Mechanical Engineering ² , Biomedical Informatics ³ , Radiology ⁴ , and Orthopaedic Surgery ⁵ , Stanford University; Musculoskeletal Research Lab ⁶ , VA Palo Alto Healthcare System
9	Fundamental Molecular Origins of Dynamically Associating Biopolymer Networks	Pam Cai ¹ , Mike Kratchovil ² , Brad Krajina ¹ , Sarah Heilshorn ² , Andy Spakowitz ¹ Departments of Chemical Engineering ¹ and Materials Science & Engineering ² , Stanford University
10	Rational Design Strategies for Tough Self-Healing Materials	Christopher Cooper ¹ , Jiheong Kang ¹ , Zhenan Bao ¹

		Demonstrators of Classical English 1 Co. C. 1
		Department of Chemical Engineering ¹ , Stanford University
11	A Tale of Two Contrast Agents: The Independent and Combined Effects of Solution Properties on the Mechanics of Soft Tissues in the Knee	Hollis Crowder ¹ , Eva G. Baylon ² , Marc Levenston ¹ Department of Mechanical Engineering ¹ , Stanford University; Department of Orthopaedic Surgery ² , University of California, San Francisco
12	Arborescent Lycopsid Periderm Production Was Limited	Michael P. D'Antonio ¹ , C. Kevin Boyce ¹ Department of Geological Sciences ¹ , Stanford University
13	A Confirmatory Test for Sperm in Sexual Assault Samples Using a Microfluidic-Integrated Cell Phone Imaging System	Shreya Deshmukh ^{1,2} , Fatih Inci ¹ , Merve G. Karaaslan ¹ , George Duncan ³ , Leonard Klevan ⁴ , Utkan Demirci ¹ Bio-Acoustic MEMS in Medicine (BAMM) Laboratory ¹ and Department of Bioengineering ² , Stanford University; Halmos College of Natural Sciences & Oceanography ³ , Nova Southeastern University; Lenny Klevan Consulting ⁴
14	MicroRNA Controls over Corticospinal Motor Neuron Development	Jessica L. Diaz ¹ , Verl B. Siththanandan ¹ , Victoria Lu ¹ , Jessica L. MacDonald ⁵ , Nicole Gonzalez-Nava ^{1,2} , Lincoln Pasquina ⁴ , Aaron Wheeler ⁵ , Peter Sarnow ³ , Theo Palmer ¹ , Jeffrey D. Macklis ^{4*} , Suzanne A. Tharin ^{1*} (*equal contribution and corresponding authors) Departments of Neurosurgery ¹ and Microbiology & Immunology ³ , Stanford University; Department of Biostatistics & Bioinformatics ² , Duke University; Department of Stem Cell & Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute ⁴ , Harvard University; Department of Biology ⁵ , Program in Neuroscience, Syracuse University
15	Geometric Deep Learning to Predict the Structure of Macromolecules	Stephan Eismann ^{1,2} , Raphael J.L. Townshend ² , Nathaniel Thomas ³ , Milind Jagota ^{2,4} , Bowen Jing ² , Ron O. Dror ^{2,5,6,7} Departments of Applied Physics ¹ , Computer Science ² , Physics ³ , Electrical Engineering ⁴ , Structural Biology ⁵ , and Molecular & Cellular Physiology ⁶ and Institute for Computational & Mathematical Engineering ⁷ , Stanford University
16	Progress Toward Voltage-Gated Sodium Channel Imaging Agents	Anna Elleman ¹ , Darren Finkelstein ¹ , Justin Du Bois ¹ Department of Chemistry ¹ , Stanford University
17	The Role of Hedgehog Signaling in Facial Nerve Regeneration Following Injury	Chrisa Faniku ¹ , William Kong ¹ , Michelle Zhang ¹ , Jon-Paul Pepper ¹ Department of Otolaryngology (Division of Facial Plastic & Reconstructive Surgery) ¹ , Stanford University
18	Conductive Materials Resembling Soft Biological Tissues: Towards Next-Generation Bio-Electronic Interfaces	Vivian R. Feig ¹ , Helen Tran ² , Minah Lee ³ , Kathy Liu ¹ , Lucia Giulia Brunel ² , Zhenan Bao ² Departments of Materials Science & Engineering ¹ and Chemical Engineering ² , Stanford University; Center for Energy Storage Research ³ , Korea Institute of Science & Technology
19	Development of Cardio-Safe BCR-ABL Inhibitors for Multidrug Resistant CML Using Phenotypic Screening in Stem Cell Derived Cardiomyocytes	Dries Feyen ^{1,4} , Arne Bruyneel ^{1,4} , Mallesh Pandrala ² , Anna Hnatiuk ^{1,4} , Arpit Dheeraj ² , Dhanir Tailor ² , Isabel Morgado ^{1,4} , Volker Wiebking ³ , Matthew Porteus ³ , Sanjay V. Malhotra ² , Mark Mercola ^{1,4}

		Departments of Medicine ¹ , Radiation Oncology ² , and Pediatrics ³ and Stanford Cardiovascular Institute ⁴ , Stanford University
20	Spatial Statistics for Violence Prevention: Understanding Patterns of Violence in Nairobi, Kenya through GPS and Maps	Rina Friedberg ¹ , Clea Sarnquist ² , Gavin Nyairo ³ , Michael Baiocchi ^{1,4} Departments of Statistics ¹ and Pediatrics ² and Prevention Research Center ⁴ , Stanford University; African Institute for Health & Development ³
21	Engineering Polymer Conformation for Efficient Carbon Nanotube Sorting	Theodore Z. Gao ¹ , Zehao Sun ^{2,3} , Xuzhou Yan ² , Zhenan Bao ² Departments of Materials Science & Engineering ¹ and Chemical Engineering ² , Stanford University; College of Chemistry & Molecular Engineering ³ , Peking University
22	Quantifying Myelin and Axon Orientations with Nanostructure-Specific X-ray Tomography	Marios Georgiadis ^{1,2,3} , Aileen Schroeter ¹ , Zirui Gao ^{1,4} , Manuel Guizar-Sicairos ⁴ , Marianne Liebi ⁵ , Christoph Leuze ³ , Jennifer McNab ³ , Aleezah Balolia ⁶ , Jelle Veraart ² , Sunglyoung Kim ² , Timothy Shepherd ² , Choong H. Lee ² , Jiangyang Zhang ² , Piotr Walczak ^{7,8} , Lin Yang ⁹ , Shirish Chodankar ⁹ , Gergely David ¹⁰ , Mark Augath ¹ , Valerio Zerbi ¹ , Stefan Sommer ¹ , Oliver Bunk ⁴ , Dmitry S. Novikov ² , Els Fieremans ² , Markus Rudin ^{1,11} , Michael Zeineh ³ Institute for Biomedical Engineering ¹ , ETH Zurich; Center for Biomedical Imaging ² , Nev York University School of Medicine; Department of Radiology ² , Stanford Universi Swiss Light Source ⁴ , Paul Scherrer Institute; Department of Physics ⁵ , Chalmers University Department of Psychology ⁶ , University of Colorado Denver; Department of Radiology ⁷ , Johns Hopkins University School of Medicin Department of Diagnostic Radiology & Nucle Medicine ⁸ , University of Maryland; National Synchrotron Light Source II ⁹ , Brookhaven National Laboratory; Balgrist University Hospital ¹⁰ and Institute of Pharmacology & Toxicology ¹¹ , University of Zurich
23	An Integrated Multi-Scale Model for Pediatric Brain Tumor Survival Prediction	Yeping Lina Qiu ^{1,2} , Amaury Sabran ¹ , Hong Zheng ¹ , Olivier Gevaert ^{1,3} Departments of Medicine (Stanford Center for Biomedical Informatics Research) ¹ , Electrica Engineering ² , and Biomedical Data Science ³ , Stanford University
24	An Integrated Multi-omic Single Cell Atlas to Redefine Human B Cell Memory	David R. Glass ^{1,2*} , Albert G. Tsai ^{2*} , John Pa Oliveria ^{2,3} , Felix J. Hartmann ² , Samuel C. Kimmey ^{2,4} , Ariel A. Calderon ^{1,2} , Luciene Borges ² , Marla C. Glass ⁵ , Lisa E. Wagar ⁶ , M. M. Davis ⁶ , Sean C. Bendall ^{1,2} (*co-authorship) Immunology Graduate Program ¹ and Departments of Pathology ² , Developmental Biology ⁴ , Surgery ⁵ , and Microbiology & Immunology ⁶ , Stanford University; Department of Medicine (Divisio of Respirology) ³ , McMaster University
25	Investigating the Detection of Bimanual Haptic Retargeting in Virtual Reality	Eric J. Gonzalez ¹ , Sean Follmer ¹ Department of Mechanical Engineering ¹ , Stanford University
26	Circadian Modulation of Oligodendroglial Lineage Cells in Developmental Myelination	Jacob Greene ¹ , Ella Eisinger ¹ , Erin M. Gibson ¹

		Danastorant - f. Danahistora & Dahasia ad
		Department of Psychiatry & Behavioral Sciences ¹ , Stanford University
27	Effects of Water, Sanitation, Handwashing (WSH) and Nutritional Interventions on Gut Microbiota Maturation in Young Children: A Cluster-Randomized Controlled Trial in Rural Bangladesh	Jessica A. Grembi ¹ , Elizabeth K. Costello ¹ , Audrie Lin ⁴ , Rashidul Haque ⁵ , Susan P. Holmes ² , Stephen P. Luby ¹ , David A. Relman ^{1,3,6} Departments of Medicine (Division of Infectious Diseases) ¹ , Statistics ² , and Microbiology & Immunology ³ , Stanford University; School of Public Health (Division of Epidemiology) ⁴ , University of California, Berkeley; International Centre for Diarrheal Disease Research ⁵ ; VA Palo Alto Health Care System ⁶
28	Analysis of Data Corrections for the First-Generation Radiofrequency Penetrable PET Insert for Simultaneous PET/MR	Andrew Groll ¹ , Craig S. Levin ^{1,2,3,4} Departments of Radiology ¹ , Electrical Engineering ² , Bioengineering ³ , and Physics ⁴ , Stanford University
29	Convergence and Divergence: The Story of Placenta Evolution as Told by <i>Poeciliopsis</i> Fishes	Michael W. Guernsey ¹ , Andres Hagmayer ² , Bart J.A. Pollux ² , David N. Reznick ³ , Julie C. Baker ⁴ Departments of Developmental Biology ¹ and Genetics ⁴ , Stanford University; Department of Animal Sciences ² , University of Wageningen; Department of Biology ³ , University of California, Riverside
30	Generative Modeling of Whole Brain Seizure Networks at Single Cell Resolution	Darian Hadjiabadi ^{1,2} , Matthew Lovett-Barron ¹ , Ivan Raikov ² , Jure Leskovec ³ , Scott C. Baraban ⁴ , Karl Deisseroth ¹ , Ivan Soltesz ² Departments of Bioengineering ¹ , Neurosurgery ² , and Computer Science ³ , Stanford University; Department of Neurological Surgery ⁴ , University of California, San Francisco
31	Distinct Gut Microbiota Profiles During Active Oral Immunotherapy of Peanut Allergic Subjects and Age-Matched Healthy Controls	Ziyuan He ^{1,2} , Gouri Vadali ³ , Wenming Zhang ^{1,2} , Rose L. Szabady ³ , Jason M. Norman ³ , Bruce Roberts ³ , R. Sharon Chinthrajah ^{1,2} , Stephen J. Galli ^{2,4,5} , Kari C. Nadeau ^{1,2} , Sandra Andorf ^{1,2} Departments of Medicine ¹ , Pathology ⁴ , and Microbiology & Immunology ⁵ and Sean N. Parker Center for Allergy & Asthma Research ² , Stanford University; Vedanta Biosciences ³
32	New Therapeutic Approach Activating HIF1 to Modulate Angiogenesis and Cardioprotection by a Novel Small Molecule Inhibitor of RBPJ	Anna Hnatiuk ¹ , Dries Feyen ¹ , Dhanir Tailor ^{2,4} , Cecilia Hurtado ⁴ , Mallesh Pandrala ² , Arne Bruyneel ¹ , Ricardo Serrano ¹ , David Staudt ¹ , Arpit Dheeraj ^{2,3} , Sanjay V. Malhotra ^{2,4} , Mark Mercola ¹ Departments of Cardiovascular Medicine ¹ , Radiation Oncology ² , and Radiation Biology ³ , Stanford University; Development, Aging, & Regeneration Program ⁴ , Sanford Burnham Prebys Medical Discovery Institute
33	Frequency-Domain Beamforming of Signals in Medical Ultrasound Using Range Doppler Method	Marko Jakovljevic ¹ , Roger Michaelides ² , Ettore Biondi ² , Howard Zebker ² , Jeremy Dahl ¹ Departments of Radiology ¹ and Geophysics ² , Stanford University
34	Adipose Secreted Isthmin-1 Stimulates PI3K/AKT Signaling and Improves Glucose Homeostasis While Reducing Hepatic Steatosis	Zewen Jiang ^{1,2} , Meng Zhao ^{1,2} , Mari Aikio ^{3,4} , Yunshin Jung ^{1,2} , Florence Dou ^{3,4} , Alexander Roche ^{3,4} , Ivan Carcamo-Oribe ^{5,6} , Joshua Knowles ^{5,6} , Martin Wabitsch ⁷ , Eric A. Appel ^{8,9} , Caitlin Maikawa ^{8,9} , Linus Tsai ¹⁰ , Evan D. Rosen ¹⁰ , Bruce M. Spiegelman ^{3,4} , Katrin J. Svensson ^{1,2}

		Departments of Pathology ¹ , Medicine (Division of Cardiovascular Medicine) ⁵ , Materials Science & Engineering ⁸ , and Bioengineering ⁹ , Stanford Diabetes Research Center ² , and Stanford Cardiovascular Institute ⁶ , Stanford University; Departments of Cell Biology ³ and Medicine (Division of Endocrinology, Diabetes & Metabolism) ¹⁰ , Harvard Medical School; Department of Cancer Biology ⁴ , Dana-Farber Cancer Institute; Division of Pediatric Endocrinology & Diabetes ⁷ , Ulm University Medical Center
35	Improving Rural Health Care Reduces Illegal Logging and Conserves Carbon in a Tropical Forest	Isabel J. Jones ^{1,2} , Andrew J. MacDonald ³ , Skylar Hopkins ⁴ , Andrea J. Lund ⁵ , Zac Yung- Chun Liu ^{1,2} , Nurul Ihsan Fawzi ⁶ , Mahardika Putra Purba ⁶ , Katie Fankhauser ⁷ , Monica Nirmala ⁸ , Arthur G. Blundell ⁹ , Ashley Emerson ¹⁰ , Jonathan Jennings ¹⁰ , Lynne Gaffikin ^{11,12} , Michele Barry ¹² , David Lopez- Carr ¹³ , Kinari Webb ¹² , Giulio A. De Leo ^{1,2,14} , Susanne H. Sokolow ^{1,2,15*} (*corresponding author) Hopkins Marine Station ¹ , Departments of Biology ² and Obstetrics & Gynecology ¹¹ , Emmett Interdisciplinary Program in Environment & Resources ⁵ , Center for Innovation in Global Health ¹² , and Woods Institute for the Environment ¹⁴ , Stanford University; Earth Research Institute ³ , Bren School of Environmental Science & Management ¹³ , and Marine Science Institute ¹⁵ , University of California, Santa Barbara; Department of Biological Sciences ⁴ , Virginia Polytechnic Institute; Alam Sehat Lestari ⁶ ; Department of Family Medicine ⁷ , Oregon Health & Science University; Department of Global Health & Population ⁸ , Harvard T. H. Chan School of Public Health; Natural Capital Advisors ⁹ ; Health In Harmony ¹⁰
36	Promiscuity of Dirigent Proteins for Biosynthesis of Lignan Analogs	Seung Yeon Kim ^{1,2} , Elizabeth Sattely ^{1,2} Department of Chemical Engineering ¹ and Howard Hughes Medical Institute ² , Stanford University
37	Temperature-Dependent Bacterial Growth Rate Responses	Benjamin Knapp ¹ , Lillian Zhu ² , Kerwyn Casey Huang ^{2,3} Biophysics Program ¹ and Departments of Bioengineering ² and Microbiology & Immunology ³ , Stanford University
38	In Mice and Men: Skeletal Stem Cells and Their Ability to Regenerate Cartilage	Lauren Koepke ¹ , Matthew Murphy ¹ , Irv Weissman ² , Michael Longaker ^{1,2} , Charles Chan ^{1,2} Department of Surgery ¹ and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
39	High Past and Present Resilience of the Amazon Rainforest	Tyler Kukla ¹ , C. Page Chamberlain ¹ Department of Geological Sciences ¹ , Stanford University
40	Ocular Dominance Plasticity in an Alzheimer's Mouse Model	Kate LeBlanc ¹ , Michelle Drews ¹ , Carla Shatz ^{1,2} Departments of Biology ¹ and Neurobiology ² , Stanford University
41	Systematic Characterization of a Novel GelMA-Based Hydrogel System	Jiannan Li ¹ , Seyedsina Moeinzadeh ¹ , Carolyn Kim ¹ , Chi-Chun Pan ¹ , George Weale ¹ , Yunzhi Peter Yang ^{1,2,3}

42	Soft and Morphable Electronics for Neural Interface	Departments of Orthopaedic Surgery ¹ , Materials Science & Engineering ² , and Bioengineering ³ , Stanford University Jinxing Li ¹ , Yuxin Liu ² , Shang Song ³ , Baibing Zhang ⁴ , Estelle Spear ⁵ , Wenhui Xu ⁶ , Paul M. George ³ , Aida Habtezion ⁵ , Xiaoke Chen ⁴ , Zhenan Bao ¹ Departments of Chemical Engineering ¹ , Bioengineering ² , Neurosurgery ³ , Biology ⁴ , Gastroenterology & Hepatology ⁵ , and Materials Science & Engineering ⁶ , Stanford University
43	Rheological Determination of Cell-on-Cell Sliding Friction in Mucin Deficient Dry-Eye Model	Chunzi Liu ¹ , Amy Madl ¹ , Wolfgang Kress ² , Frank Straube ² , Gerald G. Fuller ¹ Department of Chemical Engineering ¹ , Stanford University; Late Phase Analytical Development & Characetrization ² , Novartis International AG
44	Nervous System Evolution: A Molecular Genetic Characterization of Neural Cell Types in <i>S. kowalevskii</i>	José Miguel Andrade López ¹ , Ariel M. Pani ² , Paul J. Minor ¹ , Christopher J. Lowe ¹ Department of Biology ¹ , Stanford University; Department of Biology ² , University of North Carolina at Chapel Hill
45	A Supramolecular Lithium Ion Conductor Based Stretchable Battery	David Mackanic ¹ , Yi Cui ² , Zhenan Bao ¹ Departments of Chemical Engineering ¹ and Materials Science & Engineering ² , Stanford University
46	Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels	Christopher M. Madl ^{1,2} , Bauer L. LeSavage ² , Ruby E. Dewi ³ , Kyle J. Lampe ^{3,4} , Sarah C. Heilshorn ³ Baxter Laboratory for Stem Cell Biology ¹ and Departments of Bioengineering ² and Materials Science & Engineering ³ , Stanford University; Department of Chemical Engineering ⁴ , University of Virginia
47	Supramolecular Excipients for Biomimetic Insulin Formulations	Caitlin Maikawa ¹ , David Maahs ² , Bruce Buckingham ² , Eric Appel ³ Departments of Bioengineering ¹ , Pediatrics ² , and Materials Science & Engineering ³ , Stanford University
48	An Ultra-Fast Insulin Formulation Enabled by High Throughput Screening of Designer Polymeric Excipients	Joseph L. Mann ¹ , Caitlin L. Maikawa ² , Anton A. A. Smith ^{1,3} , Abigail K. Grosskopf ⁴ , Sam W. Baker ⁵ , Gillie A. Roth ² , Catherine M. Meis ¹ , Emily C. Gale ⁶ , Celine S. Liong ² , Santiago Correa ¹ , Doreen Chan ⁷ , Lyndsay M. Stapleton ² , Anthony C. Yu ¹ , Ben Muir ⁸ , Shaun Howard ⁸ , Almar Postma ⁸ , Eric A. Appel ^{1,2,9,10} Departments of Materials Science & Engineering ¹ , Bioengineering ² , Chemical Engineering ⁴ , Comparative Medicine ⁵ , Biochemistry ⁶ , Chemistry ⁷ , and Pediatrics (Division of Endocrinology) ¹⁰ and ChEM-H ⁹ , Stanford University; Department of Science & Technology ³ , Aarhus University
49	Effect of Porosity of the Functional Graded Scaffold for Treatment of Steroid-Associated Osteonecrosis of the Femoral Head in Rabbits	Masahiro Maruyama ¹ , Chi-Chun Pan ^{1,4} , Seyedsina Moeinzadeh ¹ , Elaine Lui ^{1,4} , Hunter Storaci ¹ , Tzuhua Dennis Lin ¹ , Chi-Wen Lo ¹ , Monica Romero Lopez ¹ , Masaya Ueno ¹ , Takeshi Utsunomiya ¹ , Ning Zhang ¹ , Tahsin N. Khan ¹ , Claire Rhee ¹ , Zhenyu Yao ¹ , Stuart B. Goodman ^{1,3} , Yunzhi Peter Yang ^{1,2,3} Departments of Orthopaedic Surgery ¹ , Materials Science & Engineering ² , Bioengineering ³ , and Mechanical Engineering ⁴ , Stanford University

50	Investigation of VISTA as a Cancer Immune Checkpoint via Therapeutic Antibody Development and Structural Analysis	Nishant Mehta ¹ , Sainiteesh Madinenni ¹ , Ryan Kelly ² , Robert Lee ³ , Andres Parra Sperberg ¹ , Jennifer Cochran ^{1,2,3} Departments of Bioengineering ¹ and Chemical Engineering ³ , Stanford University; xCella Therapeutics ²
51	Supramolecular Hydrogels for Sustained Release and Enhanced Thermal Stability of Biotherapeutics	Catherine M. Meis ¹ , Erika E. Salzman ² , Caitlin L. Maikawa ³ , Anton A. A. Smith ¹ , Joseph L. Mann ¹ , Eric A. Appel ¹ Departments of Materials Science & Engineering ¹ and Bioengineering ³ , Stanford University; Department of Applied Physics & Materials Science ² , California Institute of Technology
52	Clog-Free Sorting Using Hydrodynamic Obstacles	Endre J. Mossige ¹ , Arnold J.T.M. Mathijssen ² , Chunzi Liu ¹ , Ana U. Acuna ² , Michaela M. Hinks ² , Prima D. Sinawang ² , Zachary A. Sexton ² , Sasha Zemsky ² , Polly Fordyce ² Departments of Chemical Engineering ¹ and Bioengineering ² , Stanford University
53	LungNet: A Shallow CNN for Survival Prediction in Lung Cancer	Pritam Mukherjee ¹ , Mu Zhou ¹ , Edward Lee ² , Anne Schicht ⁴ , Yoganand Balagurunathan ⁵ , Sandy Napel ³ , Robert Gillies ⁵ , Simon Wong ² , Alexander Thieme ⁴ , Ann Leung ³ , Olivier Gevaert ^{1,6} Stanford Center for Biomedical Informatics ¹ and Departments of Electrical Engineering ² , Radiology ³ , and Biomedical Data Science ⁶ , Stanford University; Department of Radiation Oncology & Radiotherapy ⁴ , Charité Universitätsmedizin; Department of Radiology ⁵ , Moffitt Cancer Center
54	Polymer Semiconductors for Stretchable Electronics	Jaewan Mun ¹ , Zhenan Bao ¹ Department of Chemical Engineering ¹ , Stanford University
55	Utilizing Virtual Reality to Examine Avoidance Behavior in Social Anxiety Disorder	Meghana Nallajerla ¹ , Talia Weiss ² , Jeremy Bailenson ² , Tali Ball ¹ Departments of Psychiatry & Behavioral Sciences ¹ and Communication ² , Stanford University
56	Detecting Neural and Kinematic Features of Different Forward Walking Tasks in Parkinson's Disease	Johanna O'Day ^{1,2} , Chioma Anidi ² , Judy Syrkin-Nikolau ² , Ross Anderson ² , Muhammad Furqan Afzal ² , Anca Velisar ² , Scott Delp ⁶ , Helen Bronte-Stewart ^{2,3} Departments of Bioengineering ¹ , Neurology & Neurological Sciences ² , and Neurosurgery ³ , Stanford University
57	The Tree of Aging: The Structure of Genetic Markers of Aging Across Cell Types	Róbert Pálovics ¹ , Andreas Keller ¹ , Tony Wyss-Coray ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
58	A Novel Approach Towards Drug Screening using Single Cell Experiments, Isolated Heart Preparations, Multiscale Modeling, and Machine Learning	Mathias Peirlinck ¹ , Francisco Sahli Costabal ¹ , Kinya Seo ² , Euan Ashley ^{2,3} , Ellen Kuhl ^{1,4} Departments of Mechanical Engineering ¹ , Medicine ² , Pathology ³ , and Bioengineering ⁴ , Stanford University
59	Addressing Systematic Errors in Axial Distance Measurements in Localization Microscopy	Petar N. Petrov ¹ , W. E. Moerner ¹ Department of Chemistry ¹ , Stanford University
60	Development of Lentiviral Gene Therapy in Combination with Anti-c-Kit Antibody Conditioning for Treatment of Fanconi Anemia	Kayla Pfaff ^{1,2} , Pui Yan Ho ¹ , Maire Rayburn ¹ , Agnieszka Czechowicz ¹ Department of Pediatrics (Division of Stem Cell Transplantation & Regenerative Medicine) ¹ , Stanford University; Heritage

		College of Osteopathic Medicine ² , Ohio University
61	Examining Polymorphism's Effect on Gene Regulation in Craniofacial Disorders	Samantha Piekos ¹ , Ann Collier ¹ , Jillian Pattison ¹ , Pranav Bhardwaj ² , Austin Wang ³ , Sadhana Gaddam ¹ , Joanna Wysocka ⁴ , Ramanathan Guha ⁵ , Anthony Oro ¹ Program of Epithelial Biology ¹ , Departments of Statistics ² and Chemical & Systems Biology ⁴ , and Institute for Computational & Mathematical Engineering ³ , Stanford University; Google LLC ⁵
62	Translational Multimodality Imaging at the Stanford Center for Innovation in <i>In vivo</i> Imaging (SCi ³)	Laura Pisani ¹ , Frezghi Habte ¹ , Jason Thanh Lee ¹ Stanford Center for Innovation in <i>In vivo</i> Imaging ¹ , Stanford University
63	Clostridium Difficile Exploits Host Metabolic Pathways During Infection	Kali M. Pruss ¹ , Justin L. Sonnenburg ^{1,2} Department of Microbiology & Immunology ¹ , Stanford University; Chan Zuckerberg Biohub ²
64	Mesothelial Cells Promote Ovarian Cancer Stemness and Chemoresistance through Osteopontin Paracrine Signaling	Jin Qian ¹ , Bauer L. LeSavage ³ , Chenkai Ma ⁴ , Suchitra Natarajan ¹ , Joshua T. Eggold ¹ , Kelsea M. Hubka ³ , Yiren Xiao ¹ , Katherine C. Fuh ⁵ , Venkatesh Krishnan ² , Annika Enejder ³ , Sarah C. Heilshorn ³ , Oliver Dorigo ² , Erinn B. Rankin ^{1,2*} (*corresponding author) Departments of Radiation Oncology ¹ , Obstetrics & Gynecology ² , and Materials Science & Engineering ³ , Stanford University; Molecular Diagnostics Solutions ⁴ , CSIRO Health & Biosecurity; Division of Gynecologic Oncology ⁵ , Washington University in St. Louis
65	Fundamentals of Precise Ultrasound Neuromodulation	Zhihai Qiu ¹ , Mihyun Choi ² , Morteza Mohammadjavadi ¹ , Kim Butts Pauly ^{1,2,3} Departments of Radiology ¹ , Bioengineering ² , and Electrical Engineering ³ , Stanford University
66	Increased Peanut Specific IgA Levels in Plasma and Stool Are Associated with Oral Immunotherapy of Peanut Allergic Subjects	Zoe Quake ^{1,2} , Elise Liu ^{3,4,5} , Ziyuan He ^{1,2} , R. Sharon Chinthrajah ^{1,2} , Stephen J. Galli ^{1,6,7} , Stephanie C. Eisenbarth ^{3,4,5} , Kari C. Nadeau ^{1,2} Sean N. Parker Center for Allergy & Asthma Research ¹ and Departments of Medicine ² , Pathology ⁶ , and Microbiology & Immunology ⁷ , Stanford University; Departments of Laboratory Medicine ³ , Immunobiology ⁴ , and Medicine ⁵ , Yale University
67	3D Co-Culture of Mesenchymal Stem Cells and Macrophages Promotes an Anti-Inflammatory Phenotype with Enhanced Osteogenesis	Claire Rhee ^{1,2} , Mónica Romero López ^{1,2} , John Hanlon ^{1,2,3} , Masahiro Maruyama ^{1,2} , Tzuhua Lin ^{1,2} , Chi-Wen Lo ^{1,2} , Tahsin Khan ^{1,2} , Masaya Ueno ^{1,2} , Takeshi Utsunomiya ^{1,2} , Zhenyu Yao ^{1,2} , Bruce Bunnell ⁴ , Hang Lin ⁵ , Rocky Tuan ⁵ , Stuart B. Goodman ^{1,2} Orthopaedic Research Laboratories ¹ and Department of Orthopaedic Surgery ² , Stanford University; College of Veterinary Medicine ³ , Washington State University; Department of Pharmacology ⁴ , Tulane University; Department of Orthopaedic Surgery ⁵ , University of Pittsburgh
68	Effects of N-Terminal Tyrosine Sulfation on the Conformation of Chemokine Receptors	João Rodrigues ¹ , Michael Levitt ¹ Department of Structural Biology ¹ , Stanford University
69	Sustained Release Hydrogel with Modular Adjuvants Enhances Vaccine Response	Gillie A. Roth ¹ , Emily C. Gale ² , Wei Luo ³ , Bali Pulendran ³ , Eric A. Appel ⁴

		Departments of Bioengineering ¹ , Biochemistry ² , and Materials Science & Engineering ⁴ and Institute for Immunity, Transplantation & Infection ³ , Stanford University
70	Mass Spectrometry-Based Highly Multiplexed Super-Resolution Imaging Method for Fine Details of Tumor Microenvironment Monitoring and Tumor-Immune Cell Interactions	Yunhao Bai ^{1*} , Bokai Zhu ^{1*} , Marc Bosse ² , Michael Angelo ² , Yongxin Zhao ³ , Sizun Jiang ^{1#} , Xavier Rovira-Clave ^{1#} , Garry P. Nolan ^{1#} (*equal contribution, *equal contribution) Departments of Microbiology & Immunology ¹ and Pathology ² , Stanford University; Department of Biological Sciences ³ , Carnegie Mellon University
71	Creating a Rational Design of Capacitive Pressure Sensors Using Pyramidal Microstructures for Specialized Monitoring of Biosignals	Sara R.A Ruth ¹ , Levent Beker ¹ , Helen Tran ¹ , Vivian R. Feig ² , Naoji Matsuhisa ¹ , Zhenan Bao ¹ Departments of Chemical Engineering ¹ and Material Science & Engineering ² , Stanford University
72	Fluorescent Proteins for Cryogenic Single-Molecule Superresolution Imaging	Annina M. Sartor ¹ , Peter D. Dahlberg ¹ , Jiarui Wang ^{1,2} , Saumya Saurabh ² , Lucy Shapiro ² , W. E. Moerner ¹ Departments of Chemistry ¹ and Developmental Biology ² , Stanford University
73	A Peak in Insect Diversity Before the Rise of Angiosperms: Disentangling the Roles of Parasitoids and Pollinators	Sandra R. Schachat ¹ , Jonathan L. Payne ¹ Department of Geological Sciences ¹ , Stanford University
74	RNA-Sequencing of 17 Mouse Organs Across the Lifespan	Nicholas Schaum ^{1#} , Benoit Lehallier ^{2#} , Oliver Hahn ^{2#} , Róbert Pálovics ² , Shayan Hosseinzadeh ³ , Song E. Lee ² , Rene Sit ³ , Davis P. Lee ⁴ , Patricia Morán Losada ² , Macy E. Zardeneta ⁴ , Tobias Fehlmann ⁵ , James Webber ³ , Aaron McGeever ³ , Kruti Calcuttawala ² , Hui Zhang ⁴ , Daniela Berdnik ⁴ , Vidhu Mathur ² , Weilun Tan ³ , Alexander Zee ³ , Michelle Tan ³ , The Tabula Muris Consortium [†] , Angela Pisco ³ , Jim Karkanias ³ , Norma F. Neff ³ , Andreas Keller ^{2,5*} , Spyros Darmanis ³ , Stephen R. Quake ^{3,6*} , Tony Wyss-Coray ^{2,4,7,8*} (#equal contribution; *corresponding authors; †a full list of authors and affiliations appears in the online version of the paper) Institute for Stem Cell Biology & Regenerative Medicine ¹ , Departments of Neurology & Neurological Sciences ² and Bioengineering ⁶ , Paul F. Glenn Center for the Biology of Aging ⁷ , and Wu Tsai Neurosciences Institute ⁸ , Stanford University; Chan Zuckerberg Biohub ³ ; VA Palo Alto Healthcare System ⁴ ; Clinical Bioinformatics ⁵ , Saarland University
75	In vitro Assessment of Cardiac Output Effects on Bioprosthetic Pulmonary Valve Behavior	Nicole Schiavone ¹ , Christopher Elkins ¹ , Doff McElhinney ² , John K. Eaton ¹ , Alison Marsden ^{3,4} Departments of Mechanical Engineering ¹ , Cardiothoracic Surgery ² , Pediatrics ³ , and Bioengineering ⁴ , Stanford University
76	Enabling Few-View 3D Computed Tomography Imaging by Deep Learning	Liyue Shen ¹ , Wei Zhao ² , John Pauly ¹ , Lei Xing ² Departments of Electrical Engineering ¹ and Radiation Oncology ² , Stanford University

77	Controlling Monomer Sequence for Nanodisc Formation	Anton A. A. Smith ¹ , Henriette E. Autzen ⁴ , Joseph L. Mann ¹ , Yifan Cheng ⁴ , Andrew J. Spakowitz ^{1,3} , Eric A. Appel ^{1,2} Departments of Materials Science & Engineering ¹ , Bioengineering ² , and Applied Physics ³ , Stanford University; Department of Biochemistry & Biophysics ⁴ , University of California, San Francisco
78	Clinical Implications: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Do Not Impact Bone Healing at the Cellular Level	Holly M. Steininger ¹ , Thomas H. Ambrosi ² , Henry Goodnough ³ , Malachia Hoover ¹ , Michael J. Bellino ² , Julius A. Bishop ² , Michael Gardner ² , Michael Longaker ² , Charles K. F. Chan ^{1,3} Institute for Stem Cell Biology & Regenerative Medicine ¹ and Departments of Orthopaedic Surgery ² and Surgery (Division of Plastic & Reconstructive Surgery) ³ , Stanford University
79	PrimateAI: Predicting the Clinical Impact of Human Mutation with Deep Neural Networks	Laksshman Sundaram ¹ , Hong Gao ³ , Kyle Farh ³ , Anshul Kundaje ^{1,2} , William Greenleaf ^{2,4} Departments of Computer Science ¹ , Genetics ² , and Biophysics ⁴ , Stanford University; Artificial Intelligence Lab ³ , Illumina
80	Towards Rapid, Accurate Bacterial Blood Stream Infection Identification and Antibiotic Susceptibility Testing with Raman Scattering and Bioprinting	Loza Tadesse ¹ , Fareeha Safir ² , Ahmed Shuabi ³ , Hongquan Li ⁴ , Kamyar Firouzi ² , Catherine A. Hogan ⁵ , Manu Prakash ¹ , Mark Holodniy ⁶ , Niaz Banaei ^{5,6} , Stefano Ermon ³ , Butrus (Pierre) Khuri-Yakub ⁴ , Stefanie S. Jeffrey ⁷ , Amr A. E. Saleh ⁸ , Jennifer Dionne ^{8,9} Departments of Bioengineering ¹ , Mechanical Engineering ² , Computer Science ³ , Electrical Engineering ⁴ , Pathology ⁵ , Medicine (Division of Infectious Diseases) ⁶ , Surgery ⁷ , Materials Science & Engineering ⁸ , and Radiology (Molecular Imaging Program) ⁹ , Stanford University
81	Study of the Coincidence Time Resolution of Novel Cerenkov Emission Crystals	Li Tao ^{1,2} , Craig S. Levin ^{1,2,3,4} Departments of Radiology ¹ , Electrical Engineering ² , Physics ³ , and Bioengineering ⁴ , Stanford University
82	Self-Assembling Manifolds in Single-Cell RNA Sequencing Data	Alexander Tarashansky ¹ , Pengyang Li ¹ , Yuan Xue ¹ , Bo Wang ^{1,2} , Steve Quake ^{1,3,4} Departments of Bioengineering ¹ , Developmental Biology ² , and Applied Physics ³ , Stanford University; Chan Zuckerberg Biohub ⁴
83	3D Amplified MRI (aMRI) for Visualizing Pulsatile Brain Motion	Itamar Terem ^{1,2} , Leo Dang ^{3,4} , Allen Champagne ⁵ , Miriam Scadeng ^{3,4,6} , Adam de la Zerda ^{1,2} , Samantha Holdsworth ^{3,4} Departments of Electrical Engineering ¹ and Structural Biology ² , Stanford University; Department of Anatomy & Medical Imaging ³ and Centre for Brain Research ⁴ , University of Auckland; Centre for Neuroscience Studies ⁵ , Queen's University; Department of Radiology ⁶ , University of California, San Diego
84	Decoding the Cross-Talk Between Grafted Neural Stem Cells and Host Brain to Predict the Molecular Mechanisms of Stem Cell-Induced Functional Recovery After Stroke	Seth Tigchelaar ^{1,2} , Ricardo L. Azevedo- Pereira ^{1,2} , Nathan C. Manley ^{1,2} , Jennifer Vu ^{1,2} , Zhang Yue ³ , Jack Berry ^{1,2} , Guohua Sun ^{1,2} , Tonya Bliss ^{1,2} , Gary K. Steinberg ^{1,2} Departments of Neurosurgery ¹ and Neurology ³ and Stanford Stroke Center ² , Stanford University

85	Molecularly Engineering Polymers for Biodegradable and Stretchable Electronics	Helen Tran ¹ , Vivian Rachel Feig ² , Kathy Liu ² , Hung-Chin Wu ¹ , Ritchie Chen ³ , Jie Xu ¹ , Karl Deisseroth ^{3,4} , Zhenan Bao ¹ Departments of Chemical Engineering ¹ , Materials Science & Engineering ² , Bioengineering ³ , and Psychiatry & Behavioral Sciences ⁴ , Stanford University
86	IL-4 Overexpressing Mesenchymal Stem Cells Enhance Bone Healing in a Murine Long Bone Critical-Size Defect Model	Masaya Ueno ¹ , Chi-Wen Lo ¹ , Takeshi Utsunomiya ¹ , Danial Barati ¹ , Tzu-hua Lin ¹ , Yusuke Kohno ¹ , Bogdan Conrad ¹ , Claire Rhee ¹ , Masahiro Maruyama ¹ , Ning Zhang ¹ , Tahsin N. Khan ¹ , Xinming Tong ¹ , Zhenyu Yao ¹ , Monica Romero-Lopez ¹ , Stefan Zwingenberger ³ , Fan Yang ^{1,2} , Stuart B. Goodman ^{1,2} Department of Orthopaedic Surgery ¹ and Bioengineering ² , Stanford University; Center for Orthopaedics & Traumatology ³ , University Hospital Carl Gustav Carus, Technische Universität Dresden
87	Suppression of NF-kB-induced Chronic Inflammation Enhances Bone Healing in the Murine Continuous Polyethylene Particle Infusion Model	Takeshi Utsunomiya ¹ , Ning Zhang ¹ , Tzuhua Lin ¹ , Yusuke Kohno ¹ , Masaya Ueno ¹ , Masahiro Maruyama ¹ , Claire Rhee ¹ , Ejun Huang ¹ , Zhenyu Yao ¹ , Stuart B. Goodman ^{1,2} Departments of Orthopaedic Surgery ¹ and Bioengineering ² , Stanford University
88	Genetic Mechanisms of Olfactory Receptor Specification During Development in <i>Drosophila</i>	David Vacek ¹ , Hongjie Li ¹ , Liqun Luo ¹ Department of Biology ¹ , Stanford University
89	Epigenetic Modulation of CAR T Cell Function	Panayiotis Vandris ¹ , Evan W. Weber ¹ , Crystal L. Mackall ¹ Stanford Cancer Institute ¹ , Stanford University
90	Learning a Generative Model for Multi-Step Human-Object Interactions from Videos	He Wang ^{1,2*} , Sören Pirk ^{2*} , Ersin Yumer ³ , Vladimir G. Kim ⁴ , Ozan Sener ⁵ , Srinath Sridhar ² , Leonidas J. Guibas ² (*equal contribution) Departments of Electrical Engineering ¹ and Computer Science ² , Stanford University; Uber ATG ³ ; Adobe Research ⁴ ; Intel Labs ⁵
91	Combined Transient Ablation and Single Cell RNA Sequencing Resolve Medullary Thymic Epithelial Cell Heterogeneity and Development	Kristen L. Wells ¹ , Corey N. Miller ^{2,3} , Andreas R. Gschwind ¹ , Wu Wei ⁴ , Jonah D. Phipps ^{2,3} , Mark S. Anderson ^{2,3} , Lars M. Steinmetz ^{1,4,5} Departments of Genetics ¹ and Bioengineering ⁶ and Stanford Genome Technology Center ⁴ , Stanford University; Diabetes Center ² and Department of Medicine ³ , University of California, San Francisco; Genome Biology Unit ⁵ , European Molecular Biology Laboratory (EMBL)
92	Virtual Biopsy for Non-Contact Pathology – Using Optical Coherence Tomography and Machine Learning to Diagnose Cancer Non- Invasively	Yonatan Winetraub ^{1,2,3,4} , Edwin Yuan ^{2,3,4} , Itamar Terem ^{2,3,4} , Warren H. Chan ⁵ , Sumaira Aasi ⁵ , Kavita Y. Sarin ⁵ , Adam de la Zerda ^{1,2,3,4,6} Biophysics Program ¹ , Departments of Structural Biology ² and Dermatology ⁵ , Molecular Imaging Program at Stanford ³ , and Stanford Bio-X ⁴ , Stanford University; Chan Zuckerberg Biohub ⁶
93	Automated Analyses of Dendritic Spines in Volumetric Confocal Microscopic Images Using Deep Learning	Xuerong Xiao ¹ , Maja Djurisic ² , Carla Shatz ² , Daniel Rubin ³ Departments of Electrical Engineering ¹ , Neurobiology ² , and Biomedical Data Science ³ , Stanford University
94	Distributed, Scalable Wireless EEG Patches for Long-Term Sleep and Mental Health Monitoring	Joonseok Yang ¹ , Cheng Chen ¹ , Hui Wang ¹ , Michael Silvernagel ¹ , Naoji Matsushita ² , Zhenan Bao ² , Makoto Kawai ³ , Ada S. Y. Poon ¹

		Departments of Electrical Engineering ¹ , Materials Science & Engineering ² , and Psychiatry & Behavioral Sciences ³ , Stanford University
95	Smart Optical Contrast Agents for Middle Ear Infection Diagnosis	Josh Yim ¹ , Raana Kashfi ² , Matthew Bogyo ¹ , Tulio Valdez ² Departments of Chemical & Systems Biology ¹ and Otolaryngology (Division of Head & Neck Surgery) ² , Stanford University
96	Real-Time Visualization of Brain Strain with Neural Network	Xianghao Zhan ¹ , Yuzhe Liu ¹ , Sam Raymond ¹ , David Camarillo ¹ Department of Bioengineering ¹ , Stanford University
97	PDGF-BB Mitigates IL-4 Associated Inhibition of Proliferation and Osteogenesis by Mesenchymal Stem Cells	Ning Zhang ¹ , Chi-Wen Lo ¹ , Takeshi Utsunomiya ¹ , Masaya Ueno ¹ , Masahiro Maruyama ¹ , Claire Rhee ¹ , Tahsin N. Khan ¹ , Zhenyu Yao ¹ , Stuart B. Goodman ^{1,2} Departments of Orthopaedic Surgery ¹ and Bioengineering ² , Stanford University
98	Maltotriose-Based Probes for Fluorescence and Photoacoustic Imaging of Bacterial Infections	Aimen Zlitni ¹ , Gayatri Gowrishankar ¹ , Idan Steinberg ¹ , Tom Haywood ¹ , Sanjiv Sam Gambhir ^{1,2,3} Departments of Radiology ¹ , Bioengineering ² , and Materials Science & Engineering ³ , Stanford University
99	Towards Polyarylates from Methane – Expanding the Spectrum of Bioavailable Polyhydroxyalkanoates	Nils J. H. Averesch ^{1,2} , Craig S. Criddle ^{1,2} Department of Civil & Environmental Engineering ¹ , Stanford University; Biofuel & Biomaterial Manufacturing Division ² , CUBES