The Bio-X Fellowships are made possible by various gifts in order to promote interdisciplinary research for promising scientists working on projects that bridge the gap between biology and other fields.

Students are encouraged to work collaboratively with professors in different departments or schools, drawing on expertise campus-wide.
Bio-X Fellowships

Bio-X Graduate Student Fellowships 2010
Bio-X Graduate Student Fellowships 2009
Bio-X Graduate Student Fellowships 2008
Bio-X Graduate Student Fellowships 2007
Bio-X Graduate Student Fellowships 2006
Bio-X Graduate Student Fellowships 2005
Bio-X Graduate Student Fellowships 2004
Bio-X Postdoctoral Fellowships

Bio-X Graduate Student Fellowships 2010

Jaimie Adelson
Honorary Fellow
Neurosciences

Professor Carla Shatz (Biology, Neurobiology)
Our brains have the remarkable ability to change and learn. The cerebral cortex has intrinsic mechanisms that limit or promote plasticity by converting neural activity into lasting structural changes at synapses. Jaimie considers the model that, in neurons, two major histocompatibility complex class I genes, Kb and Db, signaling via the innate immune receptor PirB, act as a brake on cortical plasticity. The goal of her research is to "release the brake" in mutant mice lacking these molecules and examine if it is possible to not only increase cortical plasticity but also to promote faster recovery following acute cortical injury.

Jennifer J. Brady
Bio-X Skippy Frank Fellow
Microbiology & Immunology

Professor Helen M. Blau (Microbiology & Immunology)
Jennifer’s research focuses on understanding how cells change their fate. How does a cell change its identity, and what factors are important for making this decision? All the cells in our body have an identical genome. What makes cells differ is gene expression, which is controlled by epigenetics, factors such as histone modifications, or DNA methylation (whether the gene is on or off). Jennifer is particularly interested in mechanisms of mammalian DNA demethylation, and she uses a cell fusion based system as a model to understand the factors that control DNA methylation and gene expression.
Many functions of the human brain are distinctly—if not uniquely—human, many even unique to specific individuals. Brain function depends on precise patterns of neuronal connectivity, which are reflected in the morphology of individual neurons within populations. Still, much remains to be learned about the morphological correlates of human brain function—and dysfunction—at this level. Jonathan is developing novel DNA-based molecular machines that will enable him to study neuronal morphology and connectivity, especially long distance connectivity between brain areas, in humans.

Andrew Lee
Chemical & Systems Biology

Prof. Joseph Wu (Radiology, Medicine) and Paul Wender (Chemistry)
Coronary artery disease (CAD) is the leading cause of death in the Western world and is responsible for 1 out of every 5 deaths in America. Stem cell therapy is a novel method of treating CAD through the replacement of injured myocardium with healthy cells capable of restoring contractility to the heart. While initial clinical trials for this therapy have shown some short-term restoration of function, beneficial results have rarely persisted due to donor cell death. Andrew Lee will work to improve donor cell engraftment in the ischemic heart through the development of a pro-survival nanoparticle-molecular transporter complex.

Jonathan Leong
Neurosciences, MSTP

Professor Thomas Clandinin (Neurobiology)
Many functions of the human brain are distinctly—if not uniquely—human, many even unique to specific individuals. Brain function depends on precise patterns of neuronal connectivity, which are reflected in the morphology of individual neurons within populations. Still, much remains to be learned about the morphological correlates of human brain function—and dysfunction—at this level. Jonathan is developing novel DNA-based molecular machines that will enable him to study neuronal morphology and connectivity, especially long distance connectivity between brain areas, in humans.

Joanna Mattis
Neurosciences

Professor Karl Deisseroth (Bioengineering, Psychiatry)
Joanna’s research involves optogenetics, a method in which light-activated proteins are used to manipulate specified neuronal circuits within an intact mammalian brain. To expand the utility of this technique, she is working to develop different strategies for targeting these proteins to neuronal populations based on their projection patterns. In addition, she is using optogenetics to study the circuitry that underlies oscillatory network activity within the hippocampus.

William Noderer
Chemical Engineering

Professor Cliff Wang (Chemical Engineering)
The transcription factor p53 is a potent tumor suppressor. γ-irradiation-induced DNA damage can cause oscillations of p53. Does oscillatory behavior aid the cells in responding to DNA damage? William will create an inducible system to manually control p53 oscillations. p53 will be fused to an inducible destabilizing domain, and his constructs will be introduced into p53−/− Mdm2−/− mouse embryonic fibroblasts (MEF). Using a microfluidic device to control the concentration of a small molecule inducer, William will generate oscillations in p53. The experiment will directly show how p53 oscillations, when compared with constant levels, affect cell survival and gene expression.
Joo Yong Sim
Mechanical Engineering

Professor Beth Pruitt (Mechanical Engineering)
Joo Yong is interested in the interdisciplinary research for micro-electro-mechanical systems (MEMS), mechanics, and mechanobiology. He has been working in the Pruitt Lab and collaborating with the Nelson lab on the mechanics of cell to cell adhesions. He is developing mechanical stimulation systems and custom measurements for studying mechanotransduction of cells and the proteins associated with cell to cell and cell to matrix adhesion including vinculin and E-cadherin. His research will focus on revealing the role of the mechanical loading on regulating the cell adhesion and motility using the high-throughput mechanical stimulation systems and traction microscopy techniques.

Ryan Squire
Neurosciences

Profs. Tirin Moore (Neurobiology) and Karl Deisseroth (Bioengineering, Psychiatry)
The ability to pay attention is a fundamental cognitive function that enables us to selectively process some aspects of our sensory world while ignoring others. Identifying the specific brain cells and circuits that bring about attention is essential for understanding both normal and impaired cognition, yet this is currently beyond the reach of established neurobiological techniques. Ryan’s research proposes to apply new technologies from disparate disciplines (e.g., molecular biology, gene therapy, bioengineering) in behaving primates to achieve an unprecedented level of specificity in our knowledge of what cells and circuits underlie cognitive functions such as attention.

Limor Bursztyn
Bio-X SIGF Bruce and Elizabeth Dunlevie Fellow Electrical Engineering

Profs. Mark Horowitz (Electrical Engineering, Computer Science) and Thomas Clandinin (Neurobiology)
How do neural circuits perform the computations that drive visually guided behaviors? To answer this question, Limor will use computational approaches and engineering solutions. First, she would like to define the algorithms used to extract specific types of visual information and to link these features to behavioral modulations. Then, using in vivo imaging to record activity and statistical modeling to quantify behavioral responses, she will try to connect these computations to specific neurons. By focusing on a model organism, the fruit fly, she hopes to gain insight into the general mechanisms of neural computation relevant even to humans.

Remy Durand
Bio-X SIGF Bruce and Elizabeth Dunlevie Fellow Bioengineering

Professor Karl Deisseroth (Bioengineering, Psychiatry)
Noninvasive functional brain imaging has opened a new window into understanding how the brain functions and communicates information; however, the relationship between the activities of neurons and signals measured with functional brain imaging remains poorly understood. Remy’s research combines a novel form of neural control called optogenetics with functional magnetic resonance imaging (fMRI) to determine how different types of cells effect fMRI signals and connectivity between brain regions. Remy’s work will aid in understanding the function of the normal brain and also the diagnosis and treatment of diseased brain states.

William Parsons
Bio-X SIGF Chemistry

Professor Justin Du Bois (Chemistry)
Voltage-gated sodium channels (VGSCs) mediate electrical conduction in neuronal cells and play an essential role in pain sensation. Consequently, VGSC malfunction, improper regulation, and abnormal cellular localization have been implicated in a number of pain pathologies. To better understand the causative link between VGSCs and pain, William has designed small molecule probes derived from the potent VGSC blocker saxitoxin that can be used for multimodal real-time imaging of this protein class. William’s studies capitalize on the interplay of complex molecule synthesis, molecular biology, electrophysiology, fluorescent imaging, and live animal experiments to investigate fundamental aspects of VGSC dynamics.
Aaron Wenger
Bio-X SIGF
Morgridge Family Fellow
Computer Science

Professor Gill Bejerano (Developmental Biology, Computer Science)
The literature lists a growing number of diseases caused by improper gene regulation; however, the vast majority of the approximately one million regulatory elements in the human genome are of unknown function, and how regulatory logic is encoded in DNA sequence is not well understood. Accurate, comprehensive, and functional annotation of regulatory elements will allow the identification of causative mutations for various diseases and could suggest treatment options. Aaron works to annotate regulatory elements in the human genome by integrating large scale genome-wide experimental measurements, comparative genomics, computational learning methods, and experimental functional validation.

Xiaoxue Zhou
Bio-X SIGF
Larry Yung Fellow
Chemistry

Professor Lynette Cegelski (Chemistry)
Xiaoxue is interested in integrating chemistry, biology, and physics to investigate the assembly and function of macromolecular and whole-cell systems. Solid-state NMR is uniquely able to provide a measure of structural and dynamical information for molecular assemblies in their native environments. She wants to employ biophysical and biochemical tools and to design new strategies using solid-state NMR spectroscopy to examine assemblies such as bacterial cell walls (to understand the modes of action of newly discovered antibiotics) and membrane protein ClC-ec1 (to understand at a molecular and atomic level the structure and mechanism of this Cl-/H+ antiporter).

Haisam Islam
Bio-X Bioengineering
Fellowship

For his doctorate, Haisam plans to do research in Magnetic Resonance Imaging (MRI) or one of its related techniques. He hopes to work with the acquisition or processing methods of MRI, which will involve understanding MRI hardware, physics, and mathematics. The goal will be to improve MRI in one of many ways, including spatial and temporal resolution and resistance to artifacts, with the purpose of having a better tool for studying brain physiology. This will give other researchers the opportunity to study the brain in more detail or even study different aspects of the brain using a wider range of protocols.

Remus Wong
Bio-X Bioengineering
Fellowship

Remus plans to pursue research in synthetic biology with specific goals to design, construct, and engineer new biological functions in cells. By combining engineering ideology with basic principles of biological science, he hopes to build artificial biological systems for applications in engineering and medicine as well as to further understand the nature of living systems.

Melina Mathur
Bio-X Bioengineering
Fellowship

Understanding the intricacies of cellular metabolism and physiological processes can lead to the development of novel molecular systems that will improve people’s health. Specifically, Melina would like to construct biosensors that will collect temporal and spatial data in a given cellular environment. Such data could then be used to engineer biological counters that trigger specified responses. She is also keen on studying proteins and utilizing protein engineering to design specific ligand-receptor interactions. She believes molecular and cellular engineering will serve as an ideal platform to understand human processes and rationally design therapies to treat human disease.
Graham Dow
Biology

Professor Dominique Bergmann (Biology)
Plants are dependent on their ability to sense and respond to their surrounding environment. In such processes, stomata play a crucial role by controlling the flux of gases between plants and the atmosphere. Stomatal development and function have been independently described at a molecular and physiological level, but there remains a void in explaining fundamental connections between those paradigms, especially the environmental inputs that direct both. The goal of the Bergmann lab is to elucidate these multi-scale relationships controlling stomata to improve our understanding of plant systems biology and plant-environment interactions.

Elsa Birch
Chemical Engineering

Professor Markus Covert (Bioengineering)
Although viral genomes are relatively short and well studied, there are no reliable treatments for viral infection. This is because the complexity of infection is largely governed by the host machinery that the virus commandeers in order to replicate. Understanding the role of host genes in infection is therefore crucial to the development of new treatment strategies. The Covert lab presents a differential equation population model of E. coli infection by bacteriophage lambda. When fit to experimental infection timecourse data for E. coli knockouts, the parameters of this model give insight into the particular role of host genes in infection.

Alia Schoen
Materials Science & Engineering

Professor Sarah Heilshorn (Materials Science & Engineering)
The Heilshorn lab intends to develop clathrin as a protein-based template for the creation of hierarchically ordered inorganic nanostructures. Combining theoretical and experimental methods to gain insight into kinetic and thermodynamic processes that regulate the self-assembly of clathrin will enable the prediction and formation of ordered 2D and 3D nanostructured materials. They anticipate these to be widely applicable to other self-assembly systems. They will develop rational design of bi-functional peptides to bridge the biologic-inorganic interface, to enable efficient formation and screening of nanostructured materials for a range of applications.
Abdominal aortic aneurysms (AAA) are a life-threatening degenerative disease. A better understanding of the pathological mechanisms that lead to aneurysm formation is essential for the development of effective preventative therapies. Through the use of a novel high resolution imaging technology, coupled with computational analysis and molecular biology techniques, Sanaz's work with the laboratories of Charles Taylor and Paul Yock will characterize the three-dimensional nanometric tissue structure changes and biological events occurring within a blood vessel wall during aneurysm development in an unprecedented manner. These studies will improve their understanding of aneurysm development and may assist in the identification of potential therapeutic targets.

Autism spectrum disorders (ASDs) cause language and social impairments in children. Gene mutations can cause ASDs by altering signaling pathways of Ca2+ ions in neurons implicated with ASDs. To detect such alterations, the “patch-clamp” technique, which allows for high-resolution current measurements in ion channels, is used; however, low throughput and the destructive nature of the technique prevent observing communications between neurons and long experiment longevity. To mitigate these problems, Noureddine is helping to develop novel chip-based patch-clamp arrays where “nanoposts” are nondestructively fused into neuron membranes. This allows the study of long-term genetic-mutation effects and communication abnormalities between neurons.

Liang Liang
Bio-X SIGF
Applied Physics

Profs. Liqun Luo (Biology) and Mark Schnitzer (Biology, Applied Physics)
Liang is interested in the organization and information processing principles of neural circuits. She uses the fruit fly olfactory system as a model to study the functional connections in the central nervous system and to characterize where and how the olfactory information is integrated and transformed. She is incorporating advanced fly genetics, light-activated microbial opsins, and genetically-encoded calcium indicators to manipulate and record neuronal activity with high spatiotemporal resolution. The novel noninvasive optogenetic approach will help better understand the neural coding in the olfactory circuitry and to gain insight into the organization principles of neural systems.

Noureddine Tayebi
Electrical Engineering

Profs. Nicholas Melosh (Materials Science & Engineering) and Ricardo Dolmetsch (Neurobiology)
Autism spectrum disorders (ASDs) cause language and social impairments in children. Gene mutations can cause ASDs by altering signaling pathways of Ca2+ ions in neurons implicated with ASDs. To detect such alterations, the “patch-clamp” technique, which allows for high-resolution current measurements in ion channels, is used; however, low throughput and the destructive nature of the technique prevent observing communications between neurons and long experiment longevity. To mitigate these problems, Noureddine is helping to develop novel chip-based patch-clamp arrays where “nanoposts” are nondestructively fused into neuron membranes. This allows the study of long-term genetic-mutation effects and communication abnormalities between neurons.

Sanaz Saatchi
Bio-X Amgen Fellow
Bioengineering

Profs. Charles Taylor (Bioengineering) and Paul Yock (Bioengineering)
Abdominal aortic aneurysms (AAA) are a life-threatening degenerative disease. A better understanding of the pathological mechanisms that lead to aneurysm formation is essential for the development of effective preventative therapies. Through the use of a novel high resolution imaging technology, coupled with computational analysis and molecular biology techniques, Sanaz's work with the laboratories of Charles Taylor and Paul Yock will characterize the three-dimensional nanometric tissue structure changes and biological events occurring within a blood vessel wall during aneurysm development in an unprecedented manner. These studies will improve their understanding of aneurysm development and may assist in the identification of potential therapeutic targets.

Jong Min Sung
Applied Physics

Professor James Spudich (Biochemistry)
The objective of Jong's research is to obtain a precise correlation between the mechanical, structural, and biochemical aspects of actomyosin interactions associated with human beta-cardiac myosin cardiomyopathies at a single molecule level. The Spudich lab’s hypothesis is that the structural changes caused by the mutations will cause malfunctions of beta-cardiac myosin in terms of 1) force generation roles (step size, force), 2) enzymatic roles (actin-activated ATPase), and 3) coordination between them. To clarify with molecular precision which aspects of chemo-mechanical transduction are altered by selected HCM familial mutations, they will directly measure individual actomyosin interactions using a variety of single molecule tools.

Liang Liang
Bio-X SIGF
Applied Physics

Profs. Liqun Luo (Biology) and Mark Schnitzer (Biology, Applied Physics)
Liang is interested in the organization and information processing principles of neural circuits. She uses the fruit fly olfactory system as a model to study the functional connections in the central nervous system and to characterize where and how the olfactory information is integrated and transformed. She is incorporating advanced fly genetics, light-activated microbial opsins, and genetically-encoded calcium indicators to manipulate and record neuronal activity with high spatiotemporal resolution. The novel noninvasive optogenetic approach will help better understand the neural coding in the olfactory circuitry and to gain insight into the organization principles of neural systems.
Epistasis are speculated to play important roles in the epidemiology of common diseases. Current methods of testing interactions have achieved limited success and are ineffective in the presence of genetic heterogeneity—when people clinically have the same disease for different genetic reasons. Li’s research focuses on developing statistical and computational methods for testing interactions that are robust to genetic heterogeneity. He will use large scale computation to seek genetic patterns that account for a small proportion of the patients.

Rebecca Snyder
Bio-X Bioengineering Fellowship

Professor Sarah Heilshorn (Materials Science & Engineering)
Rebecca is working on developing in vitro mimics of the intestinal stem cell (ISC) niche. ISCs are hypothesized to be one of the most active stem cell populations in the body and reside in a structurally-identified niche environment; however, there are currently no in vitro culture conditions that maintain ISC functionality and viability. If ISCs could be successfully cultured, significant progress could be made in the use of regenerative medicine to treat various debilitating GI conditions, including inflammatory bowel diseases (i.e. Crohn’s disease, ulcerative colitis, etc.), chemotherapy-induced mucositis, and colorectal cancer.

Yen-Hsiang Wang
Bio-X Bioengineering Fellowship

Professor Christina Smolke (Bioengineering)
Yen-Hsiang is interested in developing a new approach in physical chemistry to investigate biological systems, especially focusing on in vivo whole-cell systems. In Cegelski’s lab, he will be focusing on the RNA-small molecules interaction using various techniques. The solid-state NMR magic angle coupling measurement has shown potential for structural and kinetic measurement of macromolecular interaction without high dependency of crystallization. He will use this novel approach to compare ribosome structures of several species in a statistical way. This would allow further detailed studies of RNA structure and functionality and will hopefully be beneficial to novel drug development.
Lisa Gunaydin
Neurosciences

Lisa is studying the neural circuits involved in social behavior using light-activated microbial opsins that their lab has engineered for fast optical control of neural activity. These optogenetic tools provide high spatiotemporal resolution in probing the activity of specific cell types within large neuronal populations, which will help elucidate the basic circuit dynamics underlying this complex behavior.

Tyler Hillman
Genetics, MSTP

Tyler’s focus is on understanding how cells communicate with one another to influence fate decisions during embryo development and tumor formation. In particular, he studies the gene regulatory interactions controlled by the mammalian Hedgehog signaling pathway. He completed a high-throughput RNA interference screen in search of novel genes that regulate Hedgehog signaling in mammals which resulted in the identification of several genes whose loss results in robust and reproducible inhibition of Hedgehog signaling. He is now following up these hits to better understand how they might regulate this important developmental and oncogenic signaling pathway.

Bio-X Graduate Student Fellowships 2008

Mario Diaz de la Rosa
Chemical Engineering

Professor Andrew Spakowitz (Chemical Engineering)
The Spakowitz lab examines how proteins find their target sites on DNA, a process central to proper cellular function and survival. Of particular interest is the role that DNA conformation, including supercoiling and higher-order chromatin organization, plays in this search. They have developed a novel theoretical framework to address this phenomenon on linear, supercoiled, and nucleosomal DNA, and their predictions will be subsequently verified experimentally. The resulting elucidation of the mechanisms behind target site localization will provide fundamental knowledge of gene regulation processes and the nature of protein-DNA interactions.

Ian Marshall
Civil & Environmental Engineering

Professor Alfred Spormann (Civil & Environmental Engineering, Chemical Engineering)
Complex microbial communities play an important role in a range of environments, including the biodegradation of toxic compounds in groundwater, interactions in the human gut affecting health, and the contribution of agriculture to global atmospheric methane concentrations. Ian is applying novel molecular methods, specifically, tiling DNA microarray, to query the presence and expression of functional genes from a wide range of microbes in the environment to better understand interspecies microbial interactions.
techniques into his lab’s expertise with in vivo fluorescence microendoscopy. In particular, he is studying innovative strategies for light delivery in optical stimulation experiments with channelrhodopsin and halorhodopsin. He also has interests in novel, fully-automated data analysis techniques for calcium imaging data. His studies concentrate on visual and motor systems, with a particular emphasis on cerebellar ataxia mouse models. These projects draw on his background in physics, optics, applied math, and computer science.

Mark Sellmyer
Chemical & Systems Biology, Medicine

Profs. Tom Wandless (Chemical & Systems Biology) and Michael Longaker (Surgery)
Mark is interested in developing chemical tools for improving bioscience research and medical therapies. Specifically, he is working on a technology to improve our ability to make genetic changes at targeted sites within our genome and a chemical technology to expand and control hematopoietic stem cells outside of living animals. These projects address major challenges for researchers and clinicians involved with genetic manipulation and stem cell biology. Both projects take advantage of the labs’ expertise in molecular biology and synthetic organic chemistry and interface with imaging, immunology, and regenerative medicine.

Brian Wilt
Applied Physics

Profs. Mark Schnitzer (Biology, Applied Physics) and Karl Deisseroth (Bioengineering, Psychiatry)
In order to crack the neural code, we require new tools for probing and perturbing neural circuitry in vivo. Brian is interested in incorporating these new

Gaurav Krishnamurthy
Bio-X Medtronic Fellow
Mechanical Engineering

Profs. D. Craig Miller (Cardiothoracic Surgery) and Ellen Kuhl (Mechanical Engineering)
Mitral valve disease affects ~3 million adults each year in the United States. Surgical valve repair is preferred, but valve replacement can be required. Replacement involves implantation of a mechanical or tissue valve, which is associated with anticoagulation/thromboembolic complications and less than ideal durability, respectively. To overcome these limitations, a currently important research goal is to create bioengineered autologous tissue valves. A key component of this thrust is to understand more completely the structure and function of native valves. Using radiopaque marker technology and inverse finite element analysis, Gaurav has quantified, for the first time, the material parameters of the anterior mitral leaflet in the beating heart.

Adam de la Zerda
Bio-X Skippy Frank Fellow
Electrical Engineering

Professor Sanjiv Sam Gambhir (Bioengineering, Radiology)
In Adam’s research, he develops a new technique for non-invasive imaging of living subjects called ‘Photo-acoustic Molecular Imaging.’ Using this technique, physicians will be able to monitor various proteins specific to a particular disease, indicating the molecular characteristics of the disease (e.g., whether breast cancer is responding to chemotherapy or not). He designs a photo-acoustic imaging instrument and a number of molecular contrast agents that produce a photoacoustic signal upon binding to breast cancer cells. His final goal is to integrate the imaging instrument with the cancer-detecting contrast agents by testing them on mice carrying a human breast cancer.
Melinda Cromie
Bio-X SIGF
Mechanical Engineering

Profs. Scott Delp (Bioengineering, Mechanical Engineering) and Mark Schnitzer (Biology, Applied Physics)

Melinda’s goal is to understand the fundamental behavior of muscle by imaging sarcomeres, the smallest units of muscle tissue that contract to generate force. Sarcomeres have never been imaged in humans because they are smaller than the resolution of current clinical imaging modalities. Using a novel microendoscopy system, their laboratory imaged sarcomeres in humans for the first time. Melinda’s current work is to use this newly developed system to quantify muscle contractile behavior in healthy humans and in individuals with spinal cord injury to improve surgical treatments that restore muscle function.

Viviana Gradinaru
Bio-X SIGF
Colella Family Fellow
Neurosciences

Profs. Karl Deisseroth (Bioengineering, Psychiatry) and Jaimie Henderson (Neurosurgery)

Deep brain stimulation (DBS) is a powerful therapeutic option for intractable movement and affective disorders (Parkinson’s disease, tremor, depression); however, due to the nonspecificity of electrical stimulation, DBS has variable efficacy and can lead to serious side effects, such as speech impairment or paresis. Viviana’s research uses precise bioengineering tools to address a critical question in the neurosurgery field: how does DBS exert its therapeutic effects? By using a cell-type specific optical deep brain stimulator developed in the Deisseroth lab, her research investigates the role of specific cell types in PD pathology. These findings could be used to improve the parameters for electrode placement and stimulation in patients.

Mihalis Kariolis
Bio-X Bioengineering Fellowship

Professor Jennifer Cochran (Bioengineering)

Using yeast surface display and directed evolution, the Cochran lab engineers novel proteins for use in applications ranging from cancer therapy and imaging to wound healing. Mihalis’s research is focused on engineering the Agouti-related protein (AgRP) for binding to the integrin αIIbβ3. This integrin is highly expressed on the platelet membrane, and when activated, it engenders aggregation and subsequent clot formation. Though essential to wound healing, aberrant platelet aggregation can lead to myocardial infarctions, embolisms, and strokes. Engineering AgRP to bind specifically to the αIIbβ3 integrin would limit platelet activation and subsequently lessen the risk of ischemic events.
In recent years, technological advancements have enabled the creation of structural genomics initiatives worldwide. The collective aim is to increase the structural knowledge of proteins and to achieve a thorough coverage of protein structure space. Target selection is therefore focused on proteins with low sequence homology to existing structures; however, this has come at the cost of an increasing number of structures with unknown function. Traditional methods for functional inference are unreliable at low sequence homology. Grace aims to use machine learning algorithms in combination with molecular dynamics to detect local three-dimensional patterns for functional inference.

Professor Russ Altman (Bioengineering, Genetics)

Ton is developing a design framework for genetically encoded memory. The memory system is built from in vivo machineries and functions inside a living cell. Particularly, he is exploring two alternative approaches: multistabilities of gene expression and site-specific DNA modifications. The challenges are to have fast mechanisms for encoding and decoding information and to have stable storages under stochastic environment inside a cell. This technology will be critical for engineering increasingly more complicated behaviors of a living cell, just as electronic memory systems are crucial for the modern computer.

Professor Drew Endy (Bioengineering)
Jennifer Hicks
Mechanical Engineering

Professor Scott Delp (Bioengineering, Mechanical Engineering)
Many children with cerebral palsy walk with a crouched posture that prevent them from moving safely and efficiently. Since the body is a complex dynamic system, it is difficult for clinicians to determine why a patient walks in a crouch gait and prescribe an appropriate treatment plan using the current set of tests and assessment techniques. The goal of Jennifer's research is to develop objective tools based on biomechanical simulation and statistical modeling to identify which factors—including muscle weakness, bony deformities, or joint tightness—contribute to a patient's crouch gait and should be corrected with treatment.

Frances Lau
Electrical Engineering

Profs. Craig Levin (Radiology) and Mark Horowitz (Electrical Engineering, Computer Science)
Frances is developing an ultra-high resolution Positron Emission Tomography (PET) system dedicated to breast cancer imaging. PET is a non-invasive, in vivo, molecular imaging technology that has shown promise for early identification of breast cancer due to its ability to visualize biochemical changes in malignant tissue well before structural changes occur. She applies hardware design and signal integrity concepts to develop data acquisition electronics that read out and process the small signals detected. She is also using ideas from high speed data communication circuits to propose and design a novel integrated circuit for a future PET system.

Cory McLean
Computer Science

Professor Gill Bejerano (Developmental Biology)
Evolution of cis-regulatory elements may drive the majority of anatomical evolution, yet the mechanisms of cis-regulation of gene expression are poorly understood. Cory has uncovered a number of interesting non-coding genomic regions within vertebrates using the computational tools of high-performance computing, statistics, and natural language processing. He is also investigating roles for machine learning in the discovery of a genomic signature of cis-regulatory elements. Transgenic experiments performed in collaboration with the Kingsley laboratory will help to elucidate the roles of these elements in vertebrate evolution.
Kitchener Wilson
Bioengineering

Profs. Joe Wu (Radiology) and Paul Yock (Bioengineering, Mechanical Engineering)
Graduated 2010
Kitchener’s research focused on characterizing human embryonic stem cell differentiation and transplantation, with a specific focus on cardiovascular tissue regeneration. He used genomic and proteomic methodologies such as DNA microarrays and highly sensitive protein arrays to better understand the regulatory networks that govern stem cell behavior as well as in vivo molecular imaging techniques to assess their engraftment in mouse models of disease. Of particular interest was the cardiac stem cell “niche,” or microenvironment within heart tissue, that promotes their regenerative capacity.

Sheng Ding
Bio-X Bioengineering Fellowship
(1 year award)

Professor Annelise Barron (Bioengineering)
Tissue engineering is an exciting and revolutionary strategy to overcome the problem of donor shortage in tissue transplantation. The Barron lab investigates appropriate scaffolds mimicking the natural extracellular matrices, which deliver the cells to the desired site, provide a space for new tissue formation, and potentially control the structure and function of the new tissue. Sheng’s research project is to create protein polymer hydrogels that are enzymatically cross-linked as tissue engineering scaffolds. These new hydrogels are biocompatible and biodegradable. Using genetic engineering, the Barron lab can modify these hydrogels for particular requirements for specific tissue engineering applications by designing the amino acid sequence, chain length, and block spacing of the protein polymers.

Larry Wang
Materials Science & Engineering

Profs. Sarah Heilshorn (Materials Science & Engineering) and Andrew Spakowitz (Chemical Engineering)
The goal of Larry’s research project is to understand the structural and behavioral characteristics of quaternary protein structure using the coat-vesicle protein clathrin. This study employs two major approaches in parallel: development of a theoretical model using Brownian dynamics simulation to predict quaternary structure and in vitro self-assembly experiments to observe and control the quaternary structure. Clathrin proteins perform their biological functions by self-assembling into cages, and recent reports have begun to elucidate the structure of the individual clathrin molecule and have provided a more detailed static picture of the in vivo assembly.

Rebecca Taylor
Mechanical Engineering

Profs. Ellen Kuhl (Mechanical Engineering) and Beth Pruitt (Mechanical Engineering)
After a heart attack, the heart has limited ability to repair itself. Because cardiomyocytes (CMs) are difficult to culture in vitro, there are few options for creating tissue patches to repair the heart. Dynamic cell culture, which provides synchronized electric field pacing and cyclic strain, holds promise for enabling the creation of stem cell-derived CM grafts with regenerative capacity for healing an infarcted heart. Our computational models and newly developed tools utilizing stretchable microelectrode arrays and micropatterned silicone substrates will enable engineers and biologists to create enhanced cell culture platforms for both basic and translational research into CM growth.
Jacob Hughey
Bio-X Bioengineering Fellowship

Professor Markus Covert (Bioengineering)

The goal of Jacob’s work is to provide a quantitative understanding of the intricate circuitry that controls how cells interact with their environment. Currently, he is focusing on the TNF-induced response of the NF-κB network, which is crucially involved in cell proliferation and the innate immune response but is misregulated in many cancers. He is using live cell imaging and mathematical modeling to explain how the dynamics of the network depend on TNF dose. This research will lead to greater understanding of how cells sense and respond to the intensity of environmental signals.

Jayodita Sanghvi
Bio-X Bioengineering Fellowship

Professor Markus Covert (Bioengineering)

Jayodita has been developing a computational model of the smallest known bacterium, which describes the dynamics of every molecule in the cell and includes the function of every gene. The model involves the integrated understanding of metabolism, replication, transcription, translation, regulation, and more. She has also been developing a means to experimentally validate the model. Manipulation of the virtual cell will enable a better understanding of cell physiology and help uncover unknown cell mechanisms. Future expansion of the model may help predict cell responses to drugs and environmental stresses or provide insight on how to engineer cells to perform desired functions.

Min-Sun Son
Bio-X Bioengineering Fellowship

Professor Marc Levenston (Mechanical Engineering)

Min-Sun’s work in the Soft Tissue Biomechanics Laboratory under Dr. Marc Levenston involves studying gene expressions of various proteins such as collagen, aggrecan, and aggrecanase in the immature and mature bovine menisci. These proteins are known to have important roles in meniscus degeneration. The meniscus does not have much regenerative capabilities and has been correlated with cartilage degeneration or osteoarthritis; therefore, comparing the protein expression levels in mature and immature tissue will provide helpful insight in fully understanding the mechanism of degeneration. She is also looking at different regions in the meniscus, which are subject to different kinds of mechanical forces in the knee.

Nan Xiao
Bio-X Bioengineering Fellowship

Professor Charles Taylor (Bioengineering, Mechanical Engineering)

Computational simulations of blood flow dynamics (hemodynamics) enable detailed, quantitative investigation of the role of hemodynamic factors in vascular disease. In order to construct realistic, patient-specific models of blood flow, data from non-invasive measurements must be used to improve the reliability of the simulation. Currently, the goal of the Taylor laboratory is to couple vessel wall-motion data from sequences of CT images with a 3-D computational model incorporating the fluid-structure interaction between blood and blood vessel in order to minimize the differences between observation and simulation. Accomplishing this goal will bring them one step closer to producing realistic, personalized blood flow models that may have important applications in the treatment of vascular disease.
Jennifer Blundo
Mechanical Engineering

Professor Christopher Jacobs (Mechanical Engineering)
The powerful potential of stem cell therapy motivates a better understanding of the basic mechanisms regulating developmental biology. The role of mechanical and electrical forces in the adult physiology and pathology has been well documented, and Jennifer is interested in what clues these phenomena may hold for generating robust, terminally differentiated stem cells. The pluripotent capacity of human embryonic stem cells makes them an attractive source for cell-based myocardial therapy. Specifically, the delivery of cardiac myocytes, which constitute 70-80% of the adult myocardium, may restore tissue viability and function to ischemic tissue damaged by a heart attack. Her research is motivated by the limitations of current methods to derive cardiac myocytes from stem cells. The aim is to increase the differentiation yield of cardiac myocytes through electromechanical conditioning and ultimately the in vivo performance of myocardial cell-transplants.

Ian Chen
Bioengineering, Medicine

Professor Sanjiv Sam Gambhir (Bioengineering, Radiology)
Graduated 2008
Medical Student at Stanford University

Stem cell therapy has emerged over the past decade as a promising treatment for congestive heart failure. Current clinical studies on cell therapy lack an objective method to noninvasively assess the survival and migration of stem cells following implantation. The goal of Ian’s project was to develop a novel multimodality reporter gene for labeling stem cells and monitoring their behaviors in living subjects using a combination of positron emission tomography (PET), optical bioluminescence imaging, and magnetic resonance imaging (MRI). Efforts are underway to develop and validate such a reporter gene in terms of its ability to lead to highly specific and sensitive imaging signals which are reflective of stem cell viability. The development and characterization of such reporter genes should provide a valuable tool for investigators in the future to accurately assess the efficacy of stem cell therapy in humans.

Sanjay Dastoor
Mechanical Engineering

Profs. Mark Cutkosky (Mechanical Engineering) and Scott Delp (Bioengineering, Mechanical Engineering)
Sanjay is researching the application of artificial muscles to robotics and prosthetics through a novel manufacturing method. Electric motors lack many of the dynamic characteristics of biological muscle, limiting their use in biomimetic devices. Electroactive polymer actuators are a promising alternative with muscle-like performance, light weight, low cost, and silent operation. He is developing methods for fabricating these actuators using shape deposition manufacturing, which allows customized geometries, heterogeneous materials, and embedded components.
The goal of Katy’s work is to better diagnose cartilage health, enabling early detection of diseases such as osteoarthritis. Currently, because cartilage disease cannot be diagnosed early, there is no metric of cartilage health to non-invasively evaluate restorative therapies. She is combining magnetic resonance imaging techniques with mechanical testing of ex vivo cartilage to develop a correlation between imaging parameters and mechanical properties of cartilage. Several of the novel MRI techniques she is using, e.g. sodium, T1rho, and bound pool fraction maps, are being developed at Stanford. She will translate the correlation between imaging parameters and mechanical properties to in vivo imaging of human patients.

In the study of protein-ligand binding, the conformational selection theory suggests that a protein exists as an ensemble of rapidly inter-converting folded conformations and that a ligand selects the most proper conformations to bind to. However, only a small number of conformations can be obtained experimentally, while existing simulation techniques are often too expensive to broadly sample folded conformation space. Peggy’s research will focus on designing new methods to efficiently sample protein conformations. She will use the linkage model together with rigidity analysis to develop a new, efficient protein conformation sampling method taking steric clash into account.
Although phosphoinositides (PIs) represent a minor fraction of cellular lipids, they are integral components of cell membranes. Recent evidence suggests that PIs not only have a structural role but may also act as important second messengers during membrane trafficking events. The Meyer laboratory in collaboration with Tom Wandless’s group developed a chemically-inducible translocation strategy to rapidly synthesize or degrade specific PIs at the plasma membrane. Namiko planned to make improvements upon this chemical strategy while developing new bioengineered probes to manipulate levels of different PIs in specific membrane compartments. She then used these tools to investigate the role of specific PI species in various steps of receptor-mediated endocytosis as well as the synaptic vesicle cycle.

The goal of Bertrand’s research is to develop a technology platform which combines yeast surface display and cell-free protein synthesis to engineer proteins for enhanced biological efficacy. It will be demonstrated by evolving epidermal growth factor, which plays a role in the healing process and has great therapeutic potential for wound repair and regenerative medicine.

When we make decisions, we must consider both the costs and benefits associated with each choice. In the world of economics, this problem is often solved by reducing costs and benefits to a common currency, namely money. The Newsome laboratory believes the brain solves the problem similarly by representing benefit, cost, and net value as discrete neural signals. To test this, they make economic offers to monkeys while they record from or manipulate the activity of neurons underlying the animals’ decision to accept or reject their offers. Their results will shed light on the neural basis of value.
Afsheen Afshar
Electrical Engineering, Medicine

Professor Krishna Shenoy (Electrical Eng.)
Graduated 2008
Medical Student at Stanford University
Afshen’s research with the Shenoy group involved the design and implementation of neural prosthetics that patients can use. He focused his efforts on the paradigm of point-to-point movements, such as those done by typing on a keyboard. Specifically, he developed innovative computational models and algorithms that help elucidate how the brain plans and executes movement. He was concurrently working on improving the electronic infrastructure that could support an extremely fast (i.e., realtime) and accurate ‘virtual keyboard’ that would allow a patient to type by planning movements to desired keys at desired times. Finally, he collaborated with neurosurgeon Dr. Jaimie Henderson to apply their work to a Parkinson's Disease patient population. Afshen hoped to bring all these avenues together to help create a real, useful prosthetic.

Georgios Asimenos
Computer Science

Prof. Serafim Batzoglou (Computer Science)
Graduated 2009
Director of Science & Engineering at DNAnexus
Georgios was developing a next-generation whole-genome alignment pipeline in order to harvest the enormous wealth of genomic data that is becoming available; mainly the 12 Drosophila genomes and the impending 20 mammalian genomes. He used these alignments to predict putative functional elements based on constraint of evolution. The challenge was not only to identify such elements, but to understand how they act in the context of specific biological systems. He also investigated new high-throughput experimental techniques to study predicted elements during development of the Drosophila embryo.

David Myung
Chemical Engineering, Ophthalmology

Profs. Curtis Frank (Chemical Engineering) and Christopher Ta (Ophthalmology)
Graduated 2008
Co-founder and former president of Biomimedica, Inc.
Corneal blindness affects millions worldwide and requires a corneal transplant. An engineered artificial cornea has the potential to replace the need for human donor tissue while providing better surgical outcomes. David’s project was the design, fabrication, and characterization of a novel class of hydrogel polymer alloys. These “biomimetic” materials have demonstrated great potential for emulating the transparency, biomechanics, and regenerative capacity of a human cornea. His aims were to characterize the unique properties of these polymers, engineer them to promote integration with host corneal tissue, and finally to study the cellular response to them in vitro.

Rachel Kalmar
Neurosciences

Profs. Krishna Shenoy (Electrical Engineering) and William Newsome (Neurobiology)
Graduated 2010
Rachel was interested in understanding how ensembles of neurons collectively encode and transmit information and how this neural activity underlies complex behavior and cognition. Using a combination of behavioral, physiological and computational approaches, she explored how the brain computes values, how this computation drives decision making, and the applications of this value assessment in the context of neural prosthetic development.
Vincent Chu
Bio-X Pfizer Fellow

Professor Sebastian Doniach (Applied Physics)
Graduated 2009
Ion atmospheres play an important role in the function and formation of tertiary structure in charged nucleic acids; however, current understanding of electrostatics around nucleic acids is poorly understood. Vincent’s research was focused on advancing the theory of nucleic acid electrostatics, the creation of computational tools to model these effects, and experimental verification of new theories. Research in this area would lead to new drug designs, molecular sensor designs, and increased knowledge of gene regulation.

Yufeng Yang
Neurosciences

Professor Bingwei Lu (Pathology)
Graduated 2009
Assistant Professor at Fuzhou University
The goal of Yufeng’s project was to examine the dopaminergic neuron associated neural circuitry in fruit fly (Drosophila) models of Parkinson’s disease, using a combination of genetics, electrophysiology, behavioral analysis, and computational modeling approaches.

Mindy Chang
Bio-X Bioengineering Fellowship

Professor Tirin Moore (Neurobiology)
Mindy is interested in using signal processing and computational modeling approaches to understand neural circuits. Her current project involves population analysis of neurons in the visual cortex that encode color and orientation information. Future research will focus on mechanisms of visual attention in modulating neural representations of sensory input.
Stephen Lee
Bio-X Bioengineering Fellowship

Professor Jennifer Cochran (Bioengineering)
Graduated 2008
The Cochran lab uses directed evolution and yeast display to create novel protein mutants for therapeutics in wound healing and cancer applications. Stephen’s project investigated mutants of human epidermal growth factor (EGF), a protein involved in both of these pathways. *In vitro* assays are being used to study the migratory and proliferative effects of EGF on murine and human fibroblasts. His goal was to demonstrate an EGF mutant with improved migration and proliferation over wild-type to ultimately test in mice *in vivo*.

Prasheel Lillaney
Bio-X Bioengineering Fellowship

Professor Rebecca Fahrig (Radiology)
The goal of Prasheel’s project is to build a hybrid X-Ray/MRI system that will allow Interventional Radiologists more versatility in how they approach various procedures that require MR or X-Ray guidance while still maintaining the image quality and performance offered by a conventional MRI or X-ray system. Prasheel is currently modeling the electron beam optics in X-ray tubes and determining how the electron beam is affected by the presence of the strong MR fringe field. He is also developing different X-ray tube motor designs that would allow for better tube performance in the hybrid system.
Andy Loening
Bioengineering, Medicine

Professor Sanjiv Sam Gambhir (Radiology, Bioengineering)
Graduated 2006
Radiologist at Stanford Hospital
Andy’s research focused on developing a new class of probes for in vivo receptor imaging consisting of bioluminescent proteins fused to receptor ligands. Preliminary work had focused on optimizing the bioluminescent proteins for this purpose through rational and random mutagenesis approaches. He then focused on developing the ligand/ bioluminescent fusion proteins and to validate them both in vitro and in vivo.

Sergio Moreno
Physics

Profs. Michael Levitt (Structural Biology) and Sebastian Doniach (Applied Physics)
Sergio works in Prof. Levitt’s group developing a novel computational framework to study large-scale protein movements as they explore their energy landscapes. The method will be applied to proteins under experimental study in Prof. Frydman’s lab. They expect that this interdisciplinary collaboration will be very beneficial to both experimentalists and theoreticians as it will help them understand particular protein systems and will provide insight into the general mechanisms by which proteins fold and perform their biological functions.

Relly Brandman
Chemical & Systems Biology

Professor Vijay Pande (Chemistry)
Graduated 2009
Research Scientist at Simprota Corporation
Inhibitors and activators of proteins can be used to uncover how cells work and to develop new drugs and therapies. The focus of Relly’s project was to develop and use computational tools to design modulators specific for particular proteins that would then be experimentally tested.

David Camarillo
Mechanical Engineering

Professor Kenneth Salisbury (Computer Science)
Graduated 2008
Asst. Professor in Bioengineering, Stanford University
David’s research was in the area of biomedical device innovation, specializing in robotically enhanced surgery. He developed technologies for flexible robotic manipulators. These instruments can be tele-operated by a physician or autonomously controlled. His focus was to improve the controllability of such instruments by creating novel algorithms that rely upon solid mechanics models as well as multiple sensory inputs.

Samuel Kim
Chemistry

Professor Richard Zare (Chemistry)
Graduated 2009
Postdoctoral Scholar at POSTECH (South Korea)
Microfluidic platforms for single-cell analysis have been developed. The protein chip allows for manipulating individual cyanobacteria cells and quantitatively detecting the proteins in light-harvesting antenna complexes. The DNA chip enables the amplification of genomic DNA from an environmental cyanobacterium and downstream genetic analysis. These platforms, with proper adaptations and improvements, were used to explore the origin and dynamics of the cell-to-cell heterogeneity found in a microbial population or community.
Leslie Meltzer
Neurosciences, Neurobiology

Profs. Theo Palmer (Neurosurgery) and Karl Deisseroth (Bioengineering, Psychiatry)
Graduated 2008
Medical Information Manager at Actelion Pharmaceuticals US

Leslie’s research explored the wiring of new stem cell-derived neurons into intact circuits using techniques bridging bioengineering, neurosurgery, and computer science. She investigated the following critical questions: 1) How are new stem cell-derived neurons wired into the adult mammalian brain? 2) How does wiring of new neurons according to these rules impact memory storage in computational neural networks? and 3) How does wiring of new neurons in this way impact memory storage in behaving animals?

Sara Zhao
Mechanical Engineering

Professor Beth Pruitt (Mechanical Eng.)
Graduated 2005
Mechanotransduction, the process by which cells convert mechanical stimuli into cellular signals, is important in many areas of physiology, medicine, and medical device design. The goal of Sara’s project was to study the MEC-4 channel complex that mediates sensory mechanotransduction of touch receptor neurons. A biomolecular model would be developed to describe the mechanism of MEC-4 channel complex as mechano-receptor and its critical role in the whole-cell behavior.

Amanda Malone
Bio-X Bioengineering Fellowship

Professor Christopher Jacobs (Mechanical Engineering)
Graduated 2007
Vice President and Director of Research and Development at Auritec Pharmaceuticals, Inc.

It is well documented that bone responds to changes in load with corresponding changes in size and density. The Jacob lab believes that Oscillatory Fluid Flow (OFF), generated by pressure gradients in the lacunar cannicular network, is a potent physiological signal that is recognized by bone cells as an anabolic stimulus. While it is known that bone cells respond to fluid flow with various intracellular chemical responses, the actual mechanism that transduces the physical extracellular signal to a chemical intracellular one is not yet known. Amanda hoped to determine the actual molecules that take part in this conversion from a mechanical signal to a chemical one. Her hypothesis was that this mechanotransduction event could be linked to integrins and the phosphorylation of Focal Adhesion Kinase (FAK). FAK is a good candidate for a mechanotransduction molecule in bone cells because it has both structural and enzymatic function and has proved relevant in mechanotransduction in other cell types.

Adam Grossman
Bio-X Bioengineering Fellowship

Profs. Terence Sanger (Pediatric Neurosurgery), Scott Delp (Bioengineering, Mechanical Engineering), and Krishna Shenoy (Electrical Engineering)
Graduated 2010

Adam studied children with severe movement disorders in order to generate hypotheses as to the biological cause for their disorders. He collected data from each child—ranging from simple MRI and CT scans to more complex kinesthetic analyses—and hoped the data would help shed light on the specific locations in the brain that may be malfunctioning. Using this information, Adam designed further experiments to test these hypotheses and provide insight for better treatments and potential cures for these diseases. In particular, Adam was interested in determining how and why deep brain stimulation is an effective treatment for some dystonic children and what parameters of the stimulation can be adapted to optimize the benefits of DBS in these children.
The Endoplasmic Reticulum Associated Degradation pathway is an important quality control pathway that is essential for clearing misfolded proteins from cells in a timely manner thus preventing the accumulation of toxic aggregates. Aberrant functioning of the ERAD Pathway has been linked to several diseases including Parkinson’s disease. The pathway is highly evolved with specific branches of the pathway dedicated to the clearance of misfolded proteins in different cellular locations. Employing biochemical assays and structural techniques like X-ray crystallography, single-molecule studies, and electron microscopy, the Brunger lab is interested in determining the molecular interactions between misfolded proteins and the various components of the ERAD-L pathway.

Elena is interested in connectivity aspects of brain organization. She develops data mining algorithms for analysis and modeling of in vivo human brain imaging data to understand how different brain areas interact as part of a large-scale network. Her lab works with the Cognitive and Systems Neuroscience Lab and the Vision, Imaging Science and Technology Activities Lab. To capture the structural back bone of brain networks, they use diffusion tensor imaging (DTI), while functional magnetic resonance imaging (fMRI) is used to infer activity synchronization and information flow among the key network nodes (at rest or when performing a task). She is particularly fascinated with the changes in structural and functional aspects of brain network connectivity due to brain development and aging.
Tiffany Chung
Bio-X Postdoctoral Fellowship 2005
Stanford Faculty funded
Radiology

Prof. Jianghong Rao (Radiology) and Sanjiv Sam Gambhir (Bioengineering, Radiology)
Tiffany designed small molecule probes for in vivo imaging of apoptosis. Because apoptosis takes place through activation of caspases, she planned to develop a bioluminescence imaging system that can directly image the activation of the caspases in vivo.

Sergey Solomatin
Bio-X Postdoctoral Fellowship 2005
Stanford Faculty funded
Chemistry

Prof. Steve Chu (Physics, Applied Physics) and Daniel Herschlag (Biochemistry, Chemistry, and Chemical Engineering)
Sergey's research will involve the use of single-molecule Fluorescence Resonance Energy Transfer (sm-FRET) to explore the folding dynamics of RNA. In the Herschlag and Chu labs, Sergey is using synthetic and characterization techniques to determine distance changes between labeled sites on a ribozyme molecule.
The Bio-X Fellowship Program has completed seven rounds of funding and has seen a number of students graduate and pursue their careers after Stanford. Below are some highlights from our recent graduates.

Amanda Malone, Ph.D.
*Vice President and Director of Research and Development
Auritec Pharmaceuticals, Inc.*

Auritec is a small self-owned pharmaceutical company specializing in improving the dosage dependence of FDA-approved drugs. Amanda writes grants and manages research projects which are aimed at reducing the effective dosages required for drugs which may be currently available on the market.

“The Bio-X Program and Fellowship allowed me to do riskier research for my Ph.D. because we didn’t have outside funding for that [specific] project. I think it directly contributed to the success of that work, specifically in the publication of the work in the Proceedings of the National Academy of Sciences.”

David Myung, Ph.D.
*Co-founder and former president
Biomimedica, Inc.*

Biomimedica, Inc., based in Berkeley, is an early stage, venture backed start-up developing a novel orthopaedic joint repair technology. The idea for the company came out of materials characterization work that David pursued during his graduate research while he was sponsored by the Bio-X Program.

“One of the many ways Bio-X led me to what I’m doing now is by getting me initially connected to people in the device and venture community, and these connections led to others that helped get the company started and funded.”

Leslie Meltzer, Ph.D.
*Medical Information Manager
Actelion Pharmaceuticals US*

Actelion is an emerging biopharmaceutical company that develops novel therapies for highly unmet medical needs. As the Medical Information Manager, Leslie oversees the team’s function of providing medical and scientific support to physicians and other healthcare providers, patients, and commercial colleagues in sales and marketing.

“The diversity of science [in Bio-X and the Clark Center] enables you to become a real generalist—to feel comfortable jumping into a new field. My work in Bio-X, the Neurosciences Program, and at Stanford allowed me to look for something interesting [when ready to graduate], knowing that I had the ability to learn quickly, solve problems, and work with researchers from many different fields.”
<table>
<thead>
<tr>
<th>Student</th>
<th>Department</th>
<th>Degree Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namiko Abe</td>
<td>Neurosciences</td>
<td>2007</td>
</tr>
<tr>
<td>Afsheen Afshar</td>
<td>Electrical Engineering</td>
<td>2008</td>
</tr>
<tr>
<td>Georgios Asimenos</td>
<td>Computer Science</td>
<td>2009</td>
</tr>
<tr>
<td>Relly Brandman</td>
<td>Chemical & Systems Biology</td>
<td>2009</td>
</tr>
<tr>
<td>David Camarillo</td>
<td>Mechanical Engineering</td>
<td>2008</td>
</tr>
<tr>
<td>Ian Chen</td>
<td>Bioengineering</td>
<td>2008</td>
</tr>
<tr>
<td>Vincent Chu</td>
<td>Applied Physics</td>
<td>2009</td>
</tr>
<tr>
<td>Virginia Chu</td>
<td>Bioengineering</td>
<td>2009</td>
</tr>
<tr>
<td>Adam Grossman</td>
<td>Bioengineering</td>
<td>2010</td>
</tr>
<tr>
<td>Rachel Kalmar</td>
<td>Neurosciences</td>
<td>2010</td>
</tr>
<tr>
<td>Samuel Kim</td>
<td>Chemistry</td>
<td>2009</td>
</tr>
<tr>
<td>Andreas Loening</td>
<td>Bioengineering</td>
<td>2006</td>
</tr>
<tr>
<td>Amanda Malone</td>
<td>Bioengineering</td>
<td>2007</td>
</tr>
<tr>
<td>Leslie Meltzer</td>
<td>Neurobiology</td>
<td>2008</td>
</tr>
<tr>
<td>David Myung</td>
<td>Chemical Engineering</td>
<td>2008</td>
</tr>
<tr>
<td>Guillem Pratx</td>
<td>Electrical Engineering</td>
<td>2010</td>
</tr>
<tr>
<td>Aaron Wang</td>
<td>Bioengineering</td>
<td>2009</td>
</tr>
<tr>
<td>Larry Wang</td>
<td>Materials Science & Engineering</td>
<td>2008</td>
</tr>
<tr>
<td>Kitchener Wilson</td>
<td>Bioengineering</td>
<td>2010</td>
</tr>
<tr>
<td>Yufeng Yang</td>
<td>Neurosciences</td>
<td>2009</td>
</tr>
<tr>
<td>Sara Zhao</td>
<td>Mechanical Engineering</td>
<td>2005</td>
</tr>
<tr>
<td>Student</td>
<td>Department</td>
<td>Yr completed</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Edith Arnold</td>
<td>Mechanical Engineering</td>
<td>2010</td>
</tr>
<tr>
<td>Jennifer Blundo</td>
<td>Mechanical Engineering</td>
<td>2009</td>
</tr>
<tr>
<td>Mindy Chang</td>
<td>Bioengineering</td>
<td>2008</td>
</tr>
<tr>
<td>Kelsey Clark</td>
<td>Neurosciences</td>
<td>2010</td>
</tr>
<tr>
<td>Sanjay Dastoor</td>
<td>Mechanical Engineering</td>
<td>2009</td>
</tr>
<tr>
<td>Sheng Ding</td>
<td>Bioengineering</td>
<td>2008</td>
</tr>
<tr>
<td>Jennifer Hicks</td>
<td>Mechanical Engineering</td>
<td>2010</td>
</tr>
<tr>
<td>Tyler Hillman</td>
<td>Genetics, Medicine</td>
<td>2010</td>
</tr>
<tr>
<td>Jacob Hughey</td>
<td>Bioengineering</td>
<td>2010</td>
</tr>
<tr>
<td>Kathryn Keenan</td>
<td>Mechanical Engineering</td>
<td>2009</td>
</tr>
<tr>
<td>Daniel Kimmel</td>
<td>Neurobiology</td>
<td>2009</td>
</tr>
<tr>
<td>Frances Lau</td>
<td>Electrical Engineering</td>
<td>2010</td>
</tr>
<tr>
<td>Stephen Lee</td>
<td>Bioengineering</td>
<td>2007</td>
</tr>
<tr>
<td>Prasheel Lillaney</td>
<td>Bioengineering</td>
<td>2008</td>
</tr>
<tr>
<td>Bertrand Lui</td>
<td>Bioengineering</td>
<td>2009</td>
</tr>
<tr>
<td>Murtaza Mogri</td>
<td>Bioengineering</td>
<td>2008</td>
</tr>
<tr>
<td>Sergio Moreno</td>
<td>Physics</td>
<td>2007</td>
</tr>
<tr>
<td>Jayodita Sanghvi</td>
<td>Bioengineering</td>
<td>2008</td>
</tr>
<tr>
<td>Min-Sun Son</td>
<td>Bioengineering</td>
<td>2010</td>
</tr>
<tr>
<td>Rebecca Taylor</td>
<td>Mechanical Engineering</td>
<td>2010</td>
</tr>
<tr>
<td>Jules VanDersarl</td>
<td>Materials Science & Engineering</td>
<td>2008</td>
</tr>
<tr>
<td>Angela Wu</td>
<td>Bioengineering</td>
<td>2009</td>
</tr>
<tr>
<td>Nan Xiao</td>
<td>Bioengineering</td>
<td>2010</td>
</tr>
<tr>
<td>Peggy Yao</td>
<td>Biomedical Informatics</td>
<td>2010</td>
</tr>
<tr>
<td>Student</td>
<td>Department</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Jaimie Adelson</td>
<td>Neurosciences</td>
<td></td>
</tr>
<tr>
<td>Aakash Basu</td>
<td>Applied Physics</td>
<td></td>
</tr>
<tr>
<td>Elsa Birch</td>
<td>Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Mario Díaz de la Rosa</td>
<td>Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Graham Dow</td>
<td>Biology</td>
<td></td>
</tr>
<tr>
<td>Alex Grant</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Lisa Gunaydin</td>
<td>Neurosciences</td>
<td></td>
</tr>
<tr>
<td>Haisam Islam</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Mihalis Kariolis</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Andrew Lee</td>
<td>Chemical & Systems Biology</td>
<td></td>
</tr>
<tr>
<td>Jonathan Leong</td>
<td>Neurosciences, MSTP</td>
<td></td>
</tr>
<tr>
<td>Ian Marshall</td>
<td>Civil & Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>Melina Mathur</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Joanna Mattis</td>
<td>Neurosciences</td>
<td></td>
</tr>
<tr>
<td>Cory McLean</td>
<td>Computer Science</td>
<td></td>
</tr>
<tr>
<td>Kathryn Montgomery</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>William Noderer</td>
<td>Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Andreas Rauschecker</td>
<td>Neurosciences, Psychology</td>
<td></td>
</tr>
<tr>
<td>Alia Schoen</td>
<td>Materials Science & Engineering</td>
<td></td>
</tr>
<tr>
<td>Mark Sellmyer</td>
<td>Chemical & Systems Biology</td>
<td></td>
</tr>
<tr>
<td>Joo Yong Sim</td>
<td>Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>Rebecca Snyder</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Ryan Squire</td>
<td>Neurosciences</td>
<td></td>
</tr>
<tr>
<td>Ton Subsoontorn</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Jong Min Sung</td>
<td>Applied Physics</td>
<td></td>
</tr>
<tr>
<td>Grace Tang</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Noureddine Tayebi</td>
<td>Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td>Yen-Hsiang Wang</td>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Brian Wilt</td>
<td>Applied Physics</td>
<td></td>
</tr>
<tr>
<td>Remus Wong</td>
<td>Bioengineering</td>
<td></td>
</tr>
</tbody>
</table>
Bio-X Endowed SIGF Fellows

<table>
<thead>
<tr>
<th>Student</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namiko Abe</td>
<td>Neurosciences</td>
</tr>
<tr>
<td>Limor Bursztyn</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>Melinda Cromie</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Remy Durand</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Viviana Gradinaru</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Daniel Kimmel</td>
<td>Neurosciences, Medicine</td>
</tr>
<tr>
<td>Liang Liang</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>Bertrand Lui</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Li Ma</td>
<td>Statistics</td>
</tr>
<tr>
<td>Peter Olcott</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Shawn Ouyang</td>
<td>Chemical & Systems Biology</td>
</tr>
<tr>
<td>William Parsons</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Aaron Wenger</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Xiaoxue Zhou</td>
<td>Chemistry</td>
</tr>
</tbody>
</table>

Industry and Donor Sponsored Awards

<table>
<thead>
<tr>
<th>Student</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jennifer Brady</td>
<td>(Skippy Frank Foundation) Microbiology & Immunology</td>
</tr>
<tr>
<td>Vincent Chu</td>
<td>(Pfizer) Applied Physics</td>
</tr>
<tr>
<td>Tiffany Chung</td>
<td>(Stanford Faculty funded) Radiology</td>
</tr>
<tr>
<td>Adam de la Zerda</td>
<td>(Skippy Frank Foundation) Electrical Engineering</td>
</tr>
<tr>
<td>Gaurav Krishnamurthy</td>
<td>(Medtronic Foundation) Mechanical Engineering</td>
</tr>
<tr>
<td>Elena Rykhlevskaia</td>
<td>(Lubert Stryer) Psychiatry</td>
</tr>
<tr>
<td>Sanaz Saatchi</td>
<td>(Amgen) Bioengineering</td>
</tr>
<tr>
<td>Shilpa Sambashivan</td>
<td>(Genentech) Chemical & Systems Biology</td>
</tr>
<tr>
<td>Sergey Solomatin</td>
<td>(Stanford Faculty funded) Chemistry</td>
</tr>
<tr>
<td>Tristan Ursell</td>
<td>(Genentech) Bioengineering</td>
</tr>
</tbody>
</table>
Bio-X Program

To learn more about the Bio-X Program at Stanford, please visit the Bio-X website at:

http://biox.stanford.edu

Brochure designed by F. Sincock
April 2011