

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Symposium Poster Session

March 1, 2017

POSTER # TITLE AUTHORS

1	Folding and Catalysis of the glmS Ribozyme Riboswitch Studied at the Single-Molecule Level	Andrew Savinov ¹ , Steven M. Block ^{2,3} Biophysics Program ¹ and Departments of Applied Physics ² and Biology ³ , Stanford University
2	Topological Control of DNA Organization: Interfaces Between Physics, Biology, and Materials Science	Brad A. Krajina ¹ , Abbygail Foster ² , Sarah C. Heilshorn ² , Andrew J. Spakowitz ¹ Departments of Chemical Engineering ¹ and Materials Science & Engineering ² , Stanford University
3	Towards Engineered Plant-Microbe Symbioses	Mathias J. Voges ^{1,2} , Yang Bai ³ , Ruben G. Oter ³ , Masayoshi Hashimoto ³ , Paul Schulze-Lefert ³ , Elizabeth S. Sattely ² Departments of Bioengineering ¹ and Chemical Engineering ¹ , Stanford University; Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Germany ³
4	Not Just a Black Box: Interpretable Deep Learning for Genomics	Avanti Shrikumar ¹ *, Peyton Greenside ² *, Anshul Kundaje ^{1,3} (*co-first authors) Departments of Computer Science ¹ , Biological Data Science ² , and Genetics ³ , Stanford University
5	Orientation Estimation of a Continuum Manipulator in a Phantom Lung	Jake Sganga ¹ , David Camarillo ¹ Department of Bioengineering ¹ , Stanford University
6	Synergistic Direct Interactions Contribute to Cenp-A Histone Variant Nucleosome Stability in Cells	Shengya Cao ¹ , Keda Zhou ^{2,3,4} , Karolin Luger ^{2,3,4} , Aaron F. Straight ¹ Department of Biochemistry ¹ , Stanford University; Departments of Chemistry ² and Biochemistry ³ and Howard Hughes Medical Institute ⁴ , University of Colorado at Boulder
7	Imaging the Cardiac Field Potential with Graphene Optoelectronics	Allister F. McGuire ¹ , Jason Horng ² , Halleh B. Balch ² , Hsin-Zon Tsai ² , Patrick R. Forrester ² , Michael F. Crommie ² , Feng Wang ² , Bianxiao Cui ¹ Department of Chemistry, Stanford University ¹ ; Department of Physics ² , University of California-Berkeley
8	Dynamic Genetic Control of Gene Expression and DNA Methylation in Human Aging	Trevor Martin ¹ , Hunter Fraser ¹ Department of Biology ¹ , Stanford University
9	Multimodal Measurements of Single-Molecule Dynamics using FluoRBT	Ivan E. Ivanov ^{1,2} , Paul Lebel ^{2,3,5} , Florian C. Oberstrass ^{2,5} , Zev Bryant ^{2,4} Departments of Chemical Engineering ¹ , Bioengineering ² , Applied Physics ³ , and Structural Biology ⁴ , Stanford University; Berkeley Lights Inc. and Ultima Genomics, Inc. ⁵
10	Semiautomated Classification of Motion Modes in Complex Single- Molecule Trajectories	Lucien E. Weiss ¹ , Ljiljana Milenkovic ² , Joshua Y. Yoon ¹ , Tim Stearns ² , W. E. Moerner ¹ Departments of Chemistry ¹ and Biology ² , Stanford University

11	A Parameterized Family of Anatomically Accurate Human Upper-Body Musculoskeletal Models	Samir Menon ¹ , Toki Migimatsu ¹ , Oussama Khatib ¹ Department of Computer Science ¹ , Stanford University
12	Design of Self-Assembling Bio-Inks for Cell-Based 3D Printing	Karen Dubbin ¹ , Yuki Hori ¹ , Anthony Tabet ¹ , Kazuomori Lewis ² , Sarah Heilshorn ¹ Departments of Materials Science & Engineering ¹ and Chemical Engineering ² , Stanford University
13	Automatic Identification of Cellular Niches Using Deep Neural Networks and Multi-Parameter Imaging	Salil S. Bhate ^{1,2} , Yury Goltsev ¹ , Nikolay Samusik ¹ , Garry P. Nolan ¹ Baxter Lab ¹ and Department of Bioengineering ² , Stanford University
14	TREM2 Haplodeficiency Impairs the Protective Microglia Barrier Function in Mice and Humans, Leading to Reduced Amyloid Plaque Compactness and Insulation	Peng Yuan ¹ , Carlo Condello ² , Jaime Grutzendler ³ Department of Biology ¹ , Stanford University; Department of Neurology ² , University of California-San Francisco; Department of Neurology ³ , Yale University
15	Elastin-like Protein-Hyaluronic Acid (ELP-HA) Hydrogels with Decoupled Mechanical and Biochemical Cues for Cartilage Regeneration	Danqing Zhu ¹ , Huiyuan Wang ² , Pavin Trinh ³ , Sarah C. Heilshorn ² , Fan Yang ^{1,4} Departments of Bioengineering ¹ , Materials Science & Engineering ² , Biology ³ , and Orthopaedic Surgery ⁴ , Stanford University
16	Engineering Patterned Biofilms for Microbial Consortia	Xiaofan Jin ¹ , Ingmar Riedel-Kruse ¹ Department of Bioengineering ¹ , Stanford University
17	Identifying the Biomechanical Features of Football Head Impacts Using a Support Vector Machine Classifier	Lyndia C. Wu ¹ , Calvin Kuo ² , Jesus Loza ² , Mehmet Kurt ¹ , Kaveh Laksari ¹ , Livia Zarnescu ¹ , Daniel Senif ³ , Scott C. Anderson ³ , Logan Miller ⁴ , Jill Urban ⁴ , Joel Stitzel ⁴ , David Camarillo ^{1,2} Departments of Bioengineering ¹ , Mechanical Engineering ² , and Sports Medicine ³ , Stanford University; Department of Biomedical Engineering ⁴ , Wake Forest University
18	Speckle-Free Coherence Tomography of Turbid Media	Orly Liba ^{1,2} , Matthew D. Lew ¹ , Elliott D. SoRelle ^{1,3} , Rebecca Dutta ¹ , Derek Yecies ^{1,4} , Debasish Sen ¹ , Darius M. Moshfeghi ⁵ , Steven Chu ^{6,7} , Adam de la Zerda ^{1,2,3} Departments of Structural Biology ¹ , Electrical Engineering ² , Neurosurgery ⁴ , Physics ⁶ , and Molecular & Cellular Physiology ⁷ , Biophysics Program ³ , and Byers Eye Institute ⁵ , Stanford University
19	Males and Females Differ In Biochemical Composition of Platelet-Rich Plasma	Grace Xiong ¹ , Nithya Lingampalli ^{2,4} , Smritee Dadhwal ¹ , Lawrence Leung ^{3,4} , William Robinson ^{2,4} , Constance R. Chu ^{1,4} Departments of Orthopaedic Surgery ¹ and Medicine (Divisions of Immunology and Rheumatology ² and Hematology ³), Stanford University; VA Palo Alto Health Care System ⁴
20	Connecting the Retina to the Brain: Specificity of Subcortical Targeting	Tania A. Seabrook ¹ , Nao Ishiko ¹ , Onkar S. Dhande ¹ , Victoria P. Wooley ¹ , Phong L. Nguyen ¹ , Andrew D. Huberman ^{1,2} Departments of Neurobiology ¹ and Ophthalmology ² , Stanford University
21	Segmentation of the Human Nucleus Accumbens Using High Resolution Diffusion Tractography	Sam Cartmell ¹ , Qiyuan Tian ² , Christophe Leuze ² , Grant Yang ² , Jennifer McNab ² , Casey Halpern ³

		School of Medicine ¹ and Departments of Radiology ² and Neurosurgery ³ , Stanford University
22	Integrative, Multi-Cohort Analysis of Epstein-Barr Virus (EBV)-Positive and Negative Tumor Samples to Identify Gene-Signatures Associated with EBV Oncogenesis	Eden Maloney ¹ , Erika Bongen ¹ , Francesco Vallania ² , Purvesh Khatri ^{3,5} , Olivia M. Martinez Stanford Immunology Graduate Program ¹ , Departments of Immunity Transplant Infection ² , Medicine ⁵ , Biomedical Data Science ³ , and Surgery ⁴ , Stanford University
23	Timing Performance Characterization of Two TOF-DOI PET Detector Designs: Phoswich and Offset Crystal Layers	Chen-Ming Chang ^{1,2} and Craig S. Levin ^{2,3,4,5} Departments of Applied Physics ¹ , Radiology ² , Physics ³ , Electrical Engineering ⁴ , and Bioengineering ⁵ , Stanford University
24	A Spinal Cord Circuit for Thermosensation and Thermal Nociception	Chen Ran ¹ , Gabriella Kamalani ¹ , Mark Hoon ² , Xiaoke Chen ¹ Department of Biology ¹ , Stanford University; Molecular Genetics Unit ² , Laboratory of Sensor Biology, National Institute of Dental & Craniofacial Research–National Institutes of Health
25	Variable Density Single-Shot Fast Spin Echo with Auto-Calibrated Wave Encoding	Feiyu Chen ¹ , Valentina Taviani ² , Joseph Y. Cheng ³ , Tao Zhang ⁴ , Brian A. Hargreaves ³ , John M. Pauly ¹ , Shreyas S. Vasanawala ³ Departments of Electrical Engineering ¹ and Radiology ³ , Stanford University; Global MR Applications and Workflow ² , GE Healthcare, Menlo Park, CA; Global MR Applications and Workflow ⁴ , GE Healthcare, Houston, TX
26	Stability of Monoclonal Antibodies in Solution Affected by Interfacial Viscoelasticity	Aadithya Kannan ¹ , Ian C. Shieh ² , Danielle L. Leiske ² , Chunzi Liu ¹ , Camila Kofman ¹ , Gerald Fuller ¹ Department of Chemical Engineering ¹ , Stanford University; Genentech, Inc. ²
27	Mechanical Confinement Regulates Cartilage Matrix Formation by Chondrocytes	Hong-pyo Lee1, Luo Gu ^{2,3} , David J. Mooney ^{2,3} , Marc E. Levenston ¹ , Ovijit Chaudhuri ¹ Department of Mechanical Engineering ¹ , Stanfo University; School of Engineering & Applied Sciences ² and Wyss Institute for Biologically Inspired Engineering ³ , Harvard University
28	Comparison of CdTe and BSO Crystals for Optical Property Modulation-Based Radiation Detection Method for PET	Li Tao ¹ , Craig S. Levin ^{1,2,3,4} Departments of Electrical Engineering ¹ , Radiology ² , Physics ³ , and Bioengineering ⁴ , Stanford University
29	A Scalable Active Framework for Region Annotation in 3D Shape Collections	Li Yi ¹ , Vladimir G. Kim ^{2,3} , Duygu Ceylan ³ , I-Chao Shen ⁴ , Mengyan Yan ¹ , Hao Su ² , Cewu Lu Qixing Huang ^{5,6} , Alla Sheffer ⁴ , Leonidas Guibas ^{1,2} Departments of Electrical Engineering ¹ and Computer Science ² , Stanford University; Adobe Research ³ ; University of British Columbia ⁴ ; TT Chicago ⁵ ; University of Texas-Austin ⁶
30	Nanometer-Scale Lipid Clusters in Model Membranes Revealed by Atomic Recombination in NanoSIMS	Frank R. Moss III ¹ , Steven G. Boxer ¹ Department of Chemistry ¹ , Stanford University
31	Detecting and Enumerating Soil-Transmitted Helminth Eggs in Soil: New Method Development and Results from Field Testing in Kenya and Bangladesh	Lauren Steinbaum ¹ , Laura H. Kwong ¹ , Ayse Ercumen ² , Makeda S. Negash ³ , Amira J. Lovely Sammy M. Njenga ⁴ , Alexandria B. Boehm ¹ , Ar J. Pickering ¹ , Kara L. Nelson ⁵ Department of Civil & Environmental Engineering ¹ , Stanford University; School of

		Public Health ² , Departments of Integrative
		Biology ³ and Civil & Environmental Engineering ⁵ , University of California-Berkeley;
		Eastern and Southern Africa Center of
		International Parasite Control ⁴ , Kenya Medical
		Research Institute (KEMRI), Nairobi, Kenya
		Michael Fanton ¹ , Calvin Kuo ¹ , Fidel Hernandez ¹ ,
32	Human Neck Musculature Cannot Significantly Reduce Brain Injury	David Camarillo ^{1,2}
34	During Concussive Sagittal Head Impacts	Departments of Mechanical Engineering ¹ and
		Bioengineering ² , Stanford University
		Elliott D. SoRelle ^{1,3,4,5} , Orly Liba ^{1,2,3,4} , Debasish
		Sen ¹ , Adam de la Zerda ^{1,2,3,4,5}
33	A New Spectral Contrast High-Resolution Optical Molecular Imaging	Departments of Structural Biology ¹ and Electrical
33	Platform for Medical and Biological Applications	Engineering ² , Bio-X Program ³ , Molecular
		Imaging Program at Stanford ⁴ , and Biophysics
		Program ⁵ , Stanford University
		Lily Blair ¹ , Steve Quake ^{2,3,4} , Daniel Fisher ^{1,2,4}
34	Antibody Selection in Response to Influenza Vaccine	Departments of Biology ¹ , Bioengineering ² , Physics ³ , and Applied Physics ⁴ , Stanford
	•	Physics ³ , and Applied Physics ⁴ , Stanford University
		Xinwei Shi ^{1,2} , Joseph Y. Cheng ^{1,2} , Michael
		Lustig ^{3,4} , John M. Pauly ² , Shreyas S. Vasanawala
		Departments of Radiology ¹ and Electrical
35	Robust Self-Gated Free-Breathing Cardiac MRI Using Virtual Coils	Engineering ² , Stanford University; Departments
		of Electrical Engineering ³ and Computer
		Science ⁴ , University of California-Berkeley
		Xinwei Shi ^{1,2,} and Feiyu Chen ^{1,2}
36	Accelerating MRI Scans Using Neural Networks	Departments of Radiology ¹ and Electrical
		Engineering ² , Stanford University
	Developing a Modular Virus-like Particle Vaccine Platform for Viral	Julie A. Fogarty ¹ , James R. Swartz ^{1,2}
37	Diseases	Departments of Chemical Engineering ¹ and
	Discussion	Bioengineering ² , Stanford University
		Huiyuan Wang ¹ , Xingnan Li ² , Junzhe Lou ¹ , Chuck Zhang ² , Yan Xia ³ , Calvin J. Kuo ² , Sarah
		Chuck Zhang ² , Yan Xia ³ , Calvin J. Kuo ² , Saran C. Heilshorn ¹
38	Adaptable Elastin-like Protein - Hyaluronic Acid (ELP-HA) Hydrogels as	Departments of Materials Science &
30	Customizable and Reproducible Matrices for Organotypic Cultures	Engineering ¹ , Medicine (Division of
		Hematology) ² , and Chemistry ³ , Stanford
		University University
		Isabel Goronzy ¹ , Robert Rawle ² , Peter Kasson ² ,
	Influenza Binding Avidity Governed by Sterol-Dependent Ganglioside	Steven Boxer ¹
39	Dynamics Dynamics	Department of Chemistry ¹ , Stanford University;
	Dynamics	Department of Molecular Physiology &
		Biological Physics ² , University of Virginia
		Gunes Ates Akgun ¹ , Jaecheol Lee ² , Ningyi Shao ²
40	Investigating Novel Super Enhancer of Cardiac Development	Joseph Wu ^{2,3} , Zhen Cheng ³
	_	Departments of Biology ¹ , Cardiology ² , and Radiology ³ , Stanford University
		Aris John Kare ¹ , Dehua Zhao ¹ , Lei Stanley Qi ^{1,2,3}
	Hunting for New Therapeutic Approaches: Using CRISPR Systems to	Departments of Bioengineering ¹ and Chemical &
41	Treat Huntington's Chorea	Systems Biology ² and ChEM-H ³ , Stanford
	Heat Huntington 5 Chorea	University University
		Grace Tam ¹ , Hadi Hosseini ² , Allan Reiss ^{2,3}
		Departments of Biology ¹ , Psychiatry &
42	Effects of Posture on Resting-State Brain Networks	Behavioral Sciences (Center for Interdisciplinary
		Brain Sciences Research) ² , and Radiology ³ ,
		Stanford University
43	Circumferential and Radial Variations in T2, T2* and T1rho in the	Marianne S. Black ¹ , Garry E. Gold ^{2,3} , Marc E.
41	Osteoarthritic Meniscus	Levenston ^{1,2,3} , Brian A. Hargreaves ^{2,3}

		Departments of Mechanical Engineering ¹ , Radiology ² , and Bioengineering ³ , Stanford University
44	Block Bootstrap Method for Analyzing Human Microbiota During Pregnancy	Pratheepa Jeganathan ¹ , Susan Holmes ¹ Department of Statistics ¹ , Stanford University
45	Utilizing the Glutaminase Pathway for Treatment and Monitoring of Cancer	Sonya Park ¹ , Hongjuan Zhao ² , Fred Chin ³ , Andrei Iagaru ¹ , Melinda Telli ⁴ , Donna Peehl ² , Erik Mittra ¹ , Alice Fan ⁴ Departments of Radiology (Nuclear Medicine) ¹ , Urology ² , Radiochemistry ² , and Medicine (Division of Oncology) ⁴ , Stanford University
46	A Clinical Study to Utilize Captured CTCs for Early Cancer Therapy Monitoring	Viola Chen ¹ , Jared Nesvet ² , Chin Chun Ooi ² , Sangeeta Kowli ¹ , Christian Hoerner ¹ , Shan Wang ² , Alice Fan ¹ Departments of Medicine (Division of Oncology) ¹ and Materials Science & Engineering ² , Stanford University
47	Spring-Mediated Intestinal Lengthening	Nhan Huynh ^{1,2,3} , Anne-Laure Thomas ^{1,2,3} , Genia Dubrovsky ^{1,2} , Joshua D. Rouch ^{1,2} , Andrew Scott ^{1,2} , Shant Shekherdimian ^{1,2} , James C.Y. Dunn ^{1,2,3} Departments of Surgery (Pediatric Surgery) ¹ and Bioengineering ² , University of California-Los Angeles; Department of Surgery (Pediatric Surgery) ³ , Stanford University
48	A Large Animal Model of Gastrointestinal Aganglionosis	Nhan Huynh ^{1,2,3} , Anne-Laure Thomas ^{1,2,3} , Genia Dubrovsky ^{1,2} , Joshua D. Rouch ^{1,2} , Andrew Scott ^{1,2} , Elvin Chiang ^{1,2} , James C.Y. Dunn ^{1,2,3} Departments of Surgery (Pediatric Surgery) ¹ and Bioengineering ² , University of California-Los Angeles; Department of Surgery (Pediatric Surgery) ³ , Stanford University
49	Elastic Polymer Sensor Arrays for High Spatiotemporal Resolution Mapping of Cardiac Arrhythmogenic Activity	Bartlomiej Imielski ¹ , Jia Liu ² , Yuxin Liu ² , Mahmood Alhusseini ³ , Joy Aparicio Valenzuela ¹ , Christopher Kowalewski ³ , Cholawat Pacharinsak ⁴ , Sam Baker ⁴ , Sanjiv Narayan ³ , Zhenan Bao ² , Anson Lee ¹ Departments of Cardiothoracic Surgery ¹ , Chemical Engineering ² , Medicine (Division of Cardiovascular Medicine) ³ , and Comparative Medicine (Veterinary Service Center) ⁴ , Stanford University
50	Rivas Lab: Translating Biomedical Data into Meaningful Discoveries	Christopher DeBoever ^{1,2} , Mamie Wang ³ , Antonio Edward Lindsey ³ , Oliver Bear Don't Walk IV ³ , Adam Lavertu ³ , Yosuke Tanigawa ³ , Greg McInnes ³ , Manuel Rivas ¹ Departments of Biomedical Data Science ¹ and Genetics ² and Biomedical Informatics Training Program ³ , Stanford University
51	UK Biobank Browser: A Website for the Statistical Exploration of a Large Genomic Datasets	Gregory McInnes ^{1*} , Adam Lavertu ^{1*} , Manuel Rivas ^{2*} (*equal contribution) Biomedical Informatics Training Program ¹ and Department of Biomedical Data Science ² , Stanford University
52	Emerging Technologies for Efficient Clinical, Genetic, and Omics Inference	Oliver Bear Don't Walk IV ¹ *, Yosuke Tanigawa ¹ *, Alice Yu ¹ , Adam Lavertu ¹ , Sandeep Ayyar ¹ , Manuel Rivas ²
		Ayyar ¹ , Manuel Rivas ²

		(*equal contribution) Biomedical Informatics Training Program ¹ and Department of Biomedica Data Science ² , Stanford University Robin M. Betz ¹ , Ron O. Dror ²
53	Pathway and Mechanism of Antagonist Binding to Opioid Receptors	Biophysics Program ¹ and Department of Computer Science ² , Stanford University
54	Loss and Recovery of Consciousness and the Chaotic EEG	M. Bruce MacIver ¹ , Caitlin Drover ¹ , David R. Drover ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
55	High Dose Gamma Radiation Selectively Reduces GABAA-slow Inhibition	Beza A. Dagne ¹ , Melis K. Sunay ¹ , Noëlie S.J. Cayla ¹ , Yi-Bing Ouyang ¹ , Shoucheng Ning ² , Susan J. Knox ² , Rona G. Giffard ¹ , John R. Adler M. Bruce MacIver ¹ Departments of Anesthesiology, Perioperative & Pain Medicine ¹ and Radiation Oncology ² , Stanford University
56	New Anesthetic Drug Discovery: Towards a More Selective 'Propofol'	Noëlie S.J. Cayla ¹ , Beza A. Dagne ¹ , Yun Wu ¹ , James R. Trudell ¹ , M. Frances Davies ¹ , M. Bruce MacIver ¹ , Edward J. Bertaccini ^{1,2} Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University; Department of Anesthesia ² , VA Palo Alto Health Care System
57	Single Molecule Imaging of Gene Expression and 3D Genome Structure	Alistair Boettiger ¹ Department of Developmental Biology ¹ , Stanfor University
58	An Intravascular Magnetic Wire for High-Throughput in vivo Enrichment of Rare Circulating Biomarkers	Ophir Vermesh ^{1,2*} , Amin Aalipour ^{1,2,3*} , Tianjia Ge ^{1,4*} , Yamil Saenz ² , Yue Guo ⁵ , Seung-min Park ^{1,2} , Yoshiaki Mitsutake ⁶ , Michael Bachmann ^{2,7} , Chin Chun Ooi ⁸ , Jennifer Lyons ⁶ , Kerstin Mueller ² , Hamed Arami ^{1,2} , Alfredo Green ⁶ , Shan X. Wang ^{5,9} , Sanjiv S. Gambhir ^{1,2,3} (*co-first authors) Molecular Imaging Program a Stanford ¹ , Departments of Radiology ² , Bioengineering ³ , Electrical Engineering ⁵ , Medicine (Division of Cardiovascular Medicine) Pediatrics ⁷ , Chemical Engineering ⁸ , and Materia Science & Engineering ⁹ , and Howard Hughes Medical Institute ⁴ , Stanford University
59	Directed Evolution of a Faster Promiscuous Biotin Ligase (BioID) for Spatiotemporally Resolved Proteomic Mapping in Living Cells	Tess Branon ¹ , Justin Bosch ² , Norbert Perrimon ² , Alice Ting ³ Department of Chemistry ¹ , Massachusetts Institute of Technology; Department of Genetics Harvard University; Department of Genetics ³ , Stanford University
60	Significance of the Double-Layer Capacitor Effect in Solution- Processable Polymeric Dielectrics and Exceptionally Stable Low-Voltage Organic Transistors	Raphael Pfattner ¹ , Amir Foudeh ¹ , Celine Liong ¹ Chao Wang ¹ , Wen-Ya Lee ¹ , Desheng Kong ¹ , Zhenan Bao ¹ Department of Chemical Engineering ¹ , Stanford University
61	Orchestrating the Acquisition and Maintenance of Drug Seeking in a Thalamic Circuit	Piper Keyes ¹ , Eliza Adams ¹ , Yingjie Zhu ² , Greg Nachtrab ² , Xiaoke Chen ² Neurosciences Graduate Program ¹ and Department of Biology ² , Stanford University
62	Sub-Topographic Maps for Regionally-Enhanced Analysis of Visual Space in the Mouse Retina	Rana N. El-Danaf ¹ , Andrew D. Huberman ^{1,2,3,4} Departments of Neurobiology ¹ and Ophthalmology ² , Stanford Neurosciences Institute ³ , and Stanford Bio-X Program ⁴ , Stanfor University

63	A Mixed-Reality System for Breast Surgical Planning	Stephanie L. Perkins ^{1,2} , Subashini Srinivasan ² , Michael A. Lin ³ , Jung Hwa Bae ³ , Christoph W. Leuze ² , Johannes Weickenmeier ³ , Ellen Kuhl ³ , Mark R. Cutkosky ³ , Amanda J. Wheeler ⁴ , Brian A. Hargreaves ² , Bruce L. Daniel ² Departments of Bioengineering ¹ , Radiology ² , Mechanical Engineering ³ , and Surgery ⁴ , Stanford University
64	Technical Developments for Medical Mixed-Reality	Michael A. Lin ¹ , Jung Hwa Bae ¹ , Subashini Srinivasan ² , Christoph W. Leuze ² , Stephanie L. Perkins ^{2,3} , Johannes Weickermeier ¹ , Ellen Kuhl ¹ , Amanda J. Wheeler ⁴ , Mark R. Cutkosky ¹ , Brian A. Hargreaves ² , Bruce L. Daniel ² Departments of Mechanical Engineering ¹ , Radiology ² , Bioengineering ³ , and Surgery ⁴ , Stanford University
65	Darwin: A Hardware-Accelerated Framework For Genomic Sequence Alignment	Yatish Turakhia ¹ , Gill Bejerano ^{2,3,4} , William Dally ^{1,2} Departments of Electrical Engineering ¹ , Computer Science ² , Developmental Biology ³ , and Pediatrics ⁴ , Stanford University
66	Micro RNA 200b Modulates ROS-Induced Injury in Neuronal Cells	Josh Bell ¹ , Xiaoyun Sun ² , Creed M. Stary ² , Rona G. Giffard ² Department of Anesthesia ¹ , University of Toronto; Department of Anesthesiology, Perioperative & Pain Medicine ² , Stanford University
67	Novel Stem Cell-Based Bioconstruct Regenerates Functional Muscle Tissue and Vascularization in a Volumetric Muscle Loss Model	Marco Quarta ^{1,2} , Melinda Cromie ^{1,2} , Robert Chacon ^{1,2} ; Jennifer Go ² ; Victor Garcia ² ; Justin Blonigan ^{1,2} , Mark Hamer ^{1,2} , Michael Gibbons ^{1,2} , Merel Stok ³ , Patrick Paine ^{1,2} , Thomas Rando ^{1,2} Department of Neurology ¹ , Stanford University; Center for Tissue Regeneration, Restoration & Repair (CTR3) ² , VA Palo Alto Health Care System; Department of Clinical Genetics ³ , Erasmus Medical Center, The Netherlands
68	Investigating Metastasis-Specific Alteration of Serine Metabolism in Breast Cancer	Jiangbin Ye ¹ , Gregory Ducker ^{3,4} , Jiajun Zhu ² , Ling Liu ^{3,4} , Joshua D. Rabinowitz ^{3,4} , Craig B. Thompson ² Department of Radiation Oncology ¹ , Stanford University; Cancer Biology and Genetics Program ² , Memorial Sloan Kettering Cancer Center; Lewis-Sigler Institute for Integrative Genomics ³ and Department of Chemistry ⁴ , Princeton University
69	Engineered Conductive Scaffolds to Improve Stroke Recovery	Byeongtaek Oh ¹ , Alexa Levinson ¹ , Paul George ¹ Department of Neurology & Neurological Sciences ¹ , Stanford University
70	Transport of Brownian Spheroidal Nanoparticles in Near-Wall Vascular Flows for Cancer Therapy	Tiras Y. Lin ¹ , Preyas N. Shah ¹ , Bryan R. Smith ² , Eric S.G. Shaqfeh ^{1,3} Departments of Mechanical Engineering ¹ , Radiology ² , and Chemical Engineering ³ , Stanford University Pornchai Kaewsapsak ¹ , David Shechner ² , Furqan
71	Mapping the Spatial Organization of Endogenous RNAs in Living Cells via Peroxidase-Mediated Proximity Biotinylation	Fazal ³ , John Rinn ² , Howard Chang ³ , Alice Ting ⁴ Department of Chemistry ¹ , Massachusetts Institute of Technology; Department of Stem Cell & Regenerative Biology ² , Harvard University;

		Departments of Dermatology ³ and Genetics ⁴ , Stanford University
72	Temperature Simulation of W and W25Re Targets to Deliver High Dose Rate 10 MV Photons	Jinghui Wang ¹ , Stefania Trovati ² , Philipp M. Borchard ³ , Billy W. Loo Jr. ² , Peter G. Maxim ² , Rebecca Fahrig ⁴ Departments of Radiology ¹ and Radiation Oncology ² , Stanford University; TibaRay Inc. ³ , San Francisco; Siemens Healthcare GmbH ⁴ , Germany
73	Fine-Tuned Protein Production in Methanosarcina acetivorans C2A	Ann A. Karim ¹ , Daniel R. Gestaut ² , Alfred M. Spormann ^{1,3} Departments of Civil & Environmental Engineering ¹ , Biology ² , and Chemical Engineering ³ , Stanford University
74	Directed Evolution of Split APEX2 for the Proteomic Mapping of Mitochondria-Endoplasmic Reticulum Contact Sites	Yisu Han ^{1,2} , Jeff D. Martell ³ , Alice Y. Ting ¹ Department of Genetics ¹ , Stanford University; Department of Chemistry ² , MIT; Department of Chemistry ³ , University of California-Berkeley
75	Development of Mini-Gut with Periodically Contracting Smooth Muscle Organoids	Qianqian Wang ^{1,2} , Ke Wang ³ , R. Sergio Solorzano-Vargas ⁴ , Po-Yu Lin ^{1,2} , Christopher M. Walthers ² , Anne-Laure Thomas ¹ , Martín G. Martín ⁴ , James C. Y. Dunn ^{1,2} Department of Surgery (Division of Pediatric Surgery) ¹ , Stanford University; Department of Bioengineering ² and Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research ⁴ , University of California-Los Angeles; Department of Computer Science ³ , University of North Carolina at Chapel Hill
76	Automated Detection of Dendritic Spines in Microscopic Volumetric Images	Xuerong Xiao ¹ , Assaf Hoogi ² , Daniel Rubin ² Departments of Electrical Engineering ¹ and Radiology ² , Stanford University
77	Miniaturized Optical BioSensor for Point-of-Care Total Protein Measurement	Fariah Mahzabeen ¹ , Ophir Vermesh ² , Sanjiv S. Gambhir ^{2,3} , James S. Harris ¹ Departments of Electrical Engineering ¹ and Radiology ² and Canary Center for Cancer Early Detection ³ , Stanford University
78	Biodegradation of Petroleum Based Plastics by Yellow Mealwosrms (Larvae of <i>Tenebrio molitor</i>)	Wei-Min Wu ¹ , Shanshan Yang ¹ , Anja M. Brandon ¹ , Zhiyue Wang ¹ , Hanqing Fan ¹ , James Christopher Andrew Flanagan ² , Daliang Ning ³ , Shuhong Gao ³ , Robert Waymouth ² , Jizhong Zhou ³ , Craig S. Criddle ¹ Departments of Civil & Environmental Engineering ¹ , and Chemistry ² , Stanford University; Department of Botany & Microbiology ³ , University of Oklahoma
79	Nondestructive Nanostraw Intracellular Sampling for Longitudinal Cell Monitoring	Yuhong Cao ¹ , Martin Hjort ¹ , Nicholas Melosh ¹ Department of Materials Science & Engineering ¹ , Stanford University
80	Effectiveness of Screen-Based Approaches to Managing Preoperative Anxiety in Children: Preliminary Data	Olivia Jang ¹ , Samuel Rodriguez ¹ , Thomas J. Caruso ¹ , Alex Joseph ¹ , Maya Hernandez ¹ , Laura E. Simons ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University
81	Detection of Spontaneous Action Potentials of HEK 293 Cells by Prussian Blue Thin Films	Felix Alfonso ¹ , Allister McGuire ¹ , Thomas Li ¹ , Francesca Santoro ¹ , Luke Kaplan ¹ , Bianxiao Cui ¹ Department of Chemistry ¹ , Stanford University
82	Charge-Altering Releasable Transporters (CARTs) for the Delivery and Release of Messenger RNA in Living Animals	Colin J. McKinlay ¹ , Jessica R. Vargas ¹ , Timothy R. Blake ¹ , Jonathan W. Hardy ^{2,7} , Masamitsu

		Kanada ^{2,7} , Christopher H. Contag ^{2,3,4,5,7} , Paul A. Wender ^{1,6} , Robert M. Waymouth ¹ Departments of Chemistry ¹ , Pediatrics ² ,
		Microbiology & Immunology ³ , Bioengineering ⁴ , Radiology ⁵ , and Chemical & Systems Biology ⁶ and Molecular Imaging Program at Stanford (MIPS) ⁷ , Stanford University
83	Enhancer Evolution and the Origins of Vertebrate Brain Development	Paul Minor ¹ , Yao Yao ² , Nat Clarke ¹ , Doug Epstein ² , Christopher Lowe ¹ Department of Biology ¹ , Stanford University; Department of Genetics ² , University of Pennsylvania
84	Pro-Inflammatory M1 Macrophages Promote Osteogenesis by Mesenchymal Stem Cells via the COX-2-Prostaglandin E2 Pathway	Laura Y. Lu ¹ , Florence Loi ¹ , Karthik Nathan ¹ , Tzu-hua Lin ¹ , Jukka Pajarinen ¹ , Emmanuel Gibon ^{1,3} , Akira Nabeshima ¹ , Luis Cordova ^{1,4} , Eemeli Jämsen ⁵ , Zhenyu Yao ¹ , Stuart B. Goodman ^{1,2} Departments of Orthopaedic Surgery ¹ and Bioengineering ² , Stanford University; Laboratoir de Biomécanique et Biomatériaux Ostéo-Articulaires ³ , Faculté de Médecine - Université Paris, France; Department of Oral and Maxillofacial Surgery ⁴ , University of Chile, Santiago, Chile; Department of Medicine ⁵ , Clinicum, University of Helsinki, and Helsinki University Hospital, Finland
85	A Novel Proliferating Cell Population in Human Brain Arteriovenous Malformations and its Potential Contribution to Disease Pathology	Lorelei D. Shoemaker ^{1,2} , Steven D. Chang ^{1,2} Department of Neurosurgery ¹ and the Stanford Neuromolecular Innovation Program ² , Stanford University
86	Minimally Invasive Ultrasonically Powered Implantable Devices for Next-Generation Therapies and Neuromodulation	Jayant Charthad ¹ , Marcus J. Weber ¹ , Jerry Chang ¹ , Syridon Baltsavias ¹ , Max Wang ¹ , Amin Arbabian ¹ Department of Electrical Engineering ¹ , Stanford University
87	Impact of Homonymous Visual Field Defect on Reading	Jeehey Song ^{1,2} , Ali Shariati ^{1,2} , Joyce Y. Liao ^{1,2} Department of Ophthalmology ¹ and Byers Eye Institute ² , Stanford University
88	Mechanisms for Persistent Atrial Fibrillation Revealed by 2 Independent Algorithms at Sites of Termination by Localized Ablation	Mahmood Alhusseini ¹ , Dave Vidmar ² , Gabriela Meckler ¹ , Christopher Kowalewski ¹ , Fatemah Shenasa ¹ , Albert J. Rogers ¹ , Tina Baykaner ¹ , Junaid Zaman ¹ , Mallika Tamboli ¹ , David E. Krummen ¹ , Paul Zei ¹ , Mohan Viswanathan ¹ , Pau J. Wang ¹ , Johannes Brachmann ³ , John M. Miller Wouter-Jan Rappel ² , Sanjiv M. Narayan ¹ Department of Medicine ¹ , Stanford University; Department of Physics ² , University of California San Diego; Clinic of Cardiology ³ , Klinikum Coburg, Germany; Department of Medicine ⁴ , Indiana University
89	Behavioral Time-Scale Synaptic Plasticity Underlies Spatial Coding in the Hippocampus	Aaron Milstein ¹ , Katie C. Bittner ² , Sandro Romani ² , Jeffrey C. Magee ² , Ivan Soltesz ¹ Department of Neurosurgery ¹ , Stanford University; HHMI Janelia Research Campus ²
90	Slow-Release Lipid Nanoparticles for Targeted Cardiac Delivery of Allele-Specific siRNA to Treat Dilated Cardiomyopathy	Alexa Wnorowski ¹ , Elena Matsa ^{2,3,4,5} , Alsu Zamaleeva ⁶ , Mohammed Ahmed ⁶ , Arita Dubnika ⁶ , John H. Ahrens ² , Wenchao Sun ⁶ , Vittavat Termglinchan ^{2,3,4,5} , Ioannis

		Karakikes ^{2,3,4,5} , Oscar Abilez ^{2,3,4,5} , Jayakumar
		Rajadas ⁶ , Joseph C. Wu ^{2,3,4,5} Department of Bioengineering ¹ , Medicine ³ , and Radiology ⁴ , Stanford Cardiovascular Institute ² , Institute of Stem Cell Biology & Regenerative Medicine ⁵ , and Biomaterials & Advanced Drug Delivery Laboratory ⁶ , Stanford University
91	Fear Learning in Adolescents with Chronic Pain and Pain-Related Fear	Vaibhav Murali ¹ , Corey Kronman ^{2,3,4} , Lauren Heathcote ¹ , Maya Hernandez ¹ , Clas Linnman ^{2,3,4} , David Borsook ^{2,3,4} , Laura Simons ¹ Department of Anesthesiology, Perioperative & Pain Medicine ¹ , Stanford University; Department of Anesthesiology, Perioperative & Pain Medicine ² and P.A.I.N. (Pain & Analgesia Imaging Neuroscience) Group ³ , Boston Children's Hospital; Center for Pain in the Brain Harvard Medical School
92	Charged Archaeal S-Layer Modulates Enzyme Kinetics in Pseudo- Periplasmic Space	Po-Nan Li ^{1,3} , Frederic Poitevin ² , Jonathan Herrmann ² , Henry van den Bedem ³ , Soichi Wakatsuki ^{2,3} Departments of Electrical Engineering ¹ and Structural Biology ² , Stanford University; Biosciences Division ³ , SLAC National Accelerator Laboratory
93	ApoE2, ApoE3 and ApoE4 Differentially Activate a Non-Canonical MAP-Kinase Cascade Stimulating Abeta-Secretion	Yu-Wen Alvin Huang ¹ , Marius Wernig ² , Thoma C. Südhof ¹ Department of Molecular & Cellular Physiology and Institute for Stem Cell Biology & Regenerative Medicine ² , Stanford University
94	Living Galapagos Islands	Alexander Tarashansky ¹ , Bo Wang ¹ Department of Bioengineering ¹ , Stanford University
95	Ecosystem Regeneration in Single Animals	Youngbin Lim ¹ , Margarita Khariton ¹ , Yuan Xue Bo Wang ¹ Department of Bioengineering ¹ , Stanford University
96	Environmental Calcium Controls Alternate Physical States of the Caulobacter Surface Layer	Jonathan Herrmann ^{1,2} , Paul Bargar ³ , Po-Nan Li ⁴ , Thomas Lane ² , Thomas Weiss ² , Lucy Shapiro ⁵ , Soichi Wakatsuki ^{1,2} Departments of Structural Biology ¹ , Electrical Engineering ⁴ , and Developmental Biology ⁵ , Stanford University; SLAC National Accelerator Laboratory ² ; Menlo-Atherton High School ³
97	Probing the Binding Specificity in Protein Interaction Networks Using Spectrally Encoded Peptide-Bead Libraries	Huy Q. Nguyen ¹ , Nikhil P. Damle ² , Jagoree Roy Bjorn Harink ³ , Kara Brower ¹ , Scott Longwell ¹ , Brian Baxter ³ , Kurt Thorn ³ , Martha Cyert ² , Polly Fordyce ¹ Departments of Bioengineering ¹ and Biology ² , Stanford University; Department of Biophysics & Biochemistry ³ , University of California-San Francisco
98	Programmed Cell Fate Changes in Embryonic Stem Cells Using CRISPR Technology	Marie La Russa ^{1,2} , Yanxia Liu ² , Marcos Torres ² , Yuchen Gao ³ , Barbara Panning ⁴ , Stanley Lei Qi ² Biomedical Sciences Program ¹ and Department Biochemistry & Biophysics ⁴ , University of California-San Francisco; Departments of Bioengineering ² and Chemical & Systems Biology ⁵ and Cancer Biology Program ³ , Stanfor University

99	Adhesion Prevention Using Polymer Nanoparticle (PNP) Hydrogels	Lyndsay Stapleton ¹ , Amanda Steele ¹ , Joseph Woo ² , Eric Appel ³ Departments of Bioengineering ¹ , Cardiothoracic Surgery ² , and Materials Science & Engineering ³ , Stanford University
100	Multimodal Oscillatory Coupling and Spectral Features in Epileptic Focus Localization from Sleep Electroencephalography Recordings	Tibor Nánási ¹ , Balint File ² , Zoltan Karasz ² , Emilia Toth ^{3,4} , Daniel Fabo ^{3,4} , Laszlo Entz ⁵ , Lorand Eross ⁵ , Istvan Ulbert ¹ Institute of Cognitive Neuroscience & Psychology, Research Centre for Natural Sciences ¹ , Hungarian Academy of Sciences; Faculty of Information Technology & Bionics ² , Pázmány Péter Catholic University; Epilepsy Centrum ³ and Departments of Neurology ⁴ and Functional Neurosurgery ⁵ , National Institute for Clinical Neurosciences, Budapest, Hungary
101	2 nd Generation "Trigger and Release" Smart Probes for Imaging Tumor Hypoxia <i>in vivo</i>	Bin Shen ¹ , Samuel Banister ¹ , Walid Fawzi Alrashed Alsharif ¹ , Zheng Miao ¹ , Marjan Rafat ² , Marta Vilalta ² , Edward E. Graves ² , Ananth Srinivasan ¹ , Frederick T. Chin ¹ Departments of Radiology ¹ and Radiation Oncology ² , Stanford University
102	Gradient Control and Microporosity Guidance in 3D Structures for Regenerative Medicine	Raphaël F. Canadas ^{1,2,3} , Alessandro Tocchio ¹ , Alexandra P. Marques ^{2,3} , Joaquim M. Oliveira ^{2,3} , Rui L. Reis ^{2,3} , Utkan Demirci ¹ Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Stanford University; 3B's Research Group – Biomaterials, Biodegradables & Biomimetics ² , Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Barco, Portugal; ICVS/3B'sPT Government Associate Laboratory ³ , University of Minho, Braga, Portugal
103	A Next Generation-Differential Extraction Device for Sperm Isolation and DNA Processing On-Chip	Fatih Inci ¹ , Mehmet O. Ozen ¹ , Yeseren Saylan ¹ , Morteza Miansari ¹ , Duygu Cimen ¹ , George Duncan ² , Leonard Klevan ^{3*} , and Utkan Demirci ^{1*} (*corresponding authors) Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Stanford University; Broward County Sheriff's Office, Crime Laboratory ² , Fort Lauderdale, Florida; DxNow Inc. ³ , Natick, Massachusetts
104	Mechanosensing of Neurons in 3D Brain Surrogate	Tanchen Ren ¹ , Esra Karaca ¹ , Raphaël Canadas ^{1,2,3} , Utkan Demirci ^{1*} Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Stanford University; 3B's Research Group – Biomaterials, Biodegradables & Biomimetics ² , Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Barco, Portugal; ICVS/3B'sPT Government Associate Laboratory ³ , University of Minho, Braga, Portugal
105	Evolutionary-Like Selection On-a-Chip: Using Microfluidics to Isolate the Fittest Sperm	Thiruppathiraja Chinnasamy ¹ , James Kingsley ² , Naside Gozde Durmus ^{3,7} , Paul J. Turek ⁴ ,

		Mitchell P. Rosen ⁵ , Barry Behr ⁶ , Lars M. Steinmetz ⁷ , Erkan Tüzel ² , Utkan Demirci ¹ . Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Stanford Genome Technology Center ⁷ , Departments of Biochemistry ³ , Obstetrics & Gynecology ⁵ , and Genetics ⁶ , Stanford University; Department of Physics ² , Worcester Polytechnic Institute; The Turek Clinic ⁴ , San Francisco
106	Monitoring Neutropenia in Cancer Patients at Point-of-Care (POC)	Hakan Inan ¹ , Mehmet O. Ozen ¹ , Utkan Demirci ¹ Bio-Acoustic MEMS in Medicine (BAMM) Laboratory ¹ , Canary Center for Cancer Early Detection, Stanford University
107	Exosome-Total-Isolation-Chip (ExoTIC) Device for Identification of New Lung Cancer Biomarkers	Fei Liu ^{1,2} , Ophir Vermesh ^{2,3} , Tianjia J. Ge ^{2,3} , Steven Madsen ⁴ , Andrew Sabour ^{2,3} , Gayatri Gowrishankar ^{2,3} , Masamitsu Kanada ³ ,5, Jessie V. Jokerst ^{2,3} , Raymond G. Sierra ⁶ , Edwin Chang ^{1,2,3} , Robert Sinclair ⁴ , Sanjiv Sam Gambhir ^{1,2,3} , Viswam S. Nair ^{2,7} , Utkan Demirci ^{1,2} Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Departments of Radiology ² , Materials Science & Engineering ⁴ , Pediatrics ⁵ , and Medicine ⁷ , Molecular Imaging Program at Stanford (MIPS) ³ , and Stanford PULSE Institute ⁶ , Stanford University
108	LEVITAS: Levitating Cells for Chemistry-Free Sorting of Rare Circulating Cancer Cells and Cell Clusters from Whole Blood	N. Gozde Durmus ^{1,5} , Kaushik Sridhar ² , Hojae Lee ² , Shreya Sanjay Deshmoukh ^{2,3} , Christian Hoerner ⁶ , Fatih Inci ² , Ozlem Ercal ² , Neeraja Ravi ³ , Yoriko Imae ⁷ , Jordan Preiss ⁷ , Heather A. Wakelee ⁶ , Alice C. Fan ⁶ , Ronald W. Davis ^{1,4,5} , Lars M. Steinmetz ^{4,5*} , Utkan Demirci ^{2*} (*corresponding authors) Departments of Biochemistry ¹ , Bioengineering ³ , Genetics ⁴ , and Medicine (Division of Oncology) ⁶ , Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ² , Stanford Genome Technology Center ⁵ , and Cancer Clinical Trials Office ⁷ , Stanford University
109	Flow Induces Epithelial-Mesenchymal Transition (EMT) in Dynamic Bioengineered Lung Cancer Microenvironment	Vigneshwaran Mani ¹ , Zhonglin Lyu ¹ , Baris Dercal ¹ , Ramasamy Paulmurugan ^{2,3,4} , Utkan Demirci ¹ Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Stanford University; Molecular Imaging Program at Stanford ² , Cellular Pathway Imaging Laboratory (CPIL) ³ , and Department of Radiology ⁴ , Stanford University
110	Multiplexed μ -fluidic-ELISA for Cardiovascular Disorders	Mehmet O. Ozen ¹ *, Vigneshwaran Mani ¹ *, Utkan Demirci ¹ (*equal contribution) Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Stanford University
111	Guided Self-Assembly of Functional Cellular Architectures Based on Magnetic Levitation	Alessandro Tocchio ¹ , Naside Gozde Durmus ^{2,3} , Bukre Coskun ⁴ , Vigneshwaran Mani ¹ , Kaushik Sridhar ¹ , Raphael Faustino Canadas ^{1,5,6} , Rami El Assal ¹ , Utkan Demirci ¹

		Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center for Cancer Early Detection ¹ , Department of Biochemistry ² , and Stanford Genome Technology Center ³ , Stanford University; Department of Molecular & Cellular Biology, University of California-Davis; 3B's Research Group – Biomaterials, Biodegradables & Biomimetics ⁵ , Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Barco, Portugal; ICVS/3B'sPT Government Associate Laboratory, University of Minho ⁶ , Braga, Portugal
112	Identifying Regions Where Targeted Ablation Terminated Persistent Atrial Fibrillation: Interobserver Variability in Multiple Mapping Systems	Gabriela L. Meckler ¹ , Mallika Tamboli ¹ , Bartolomiej Imielski ¹ , Christopher A.B. Kowalewski ¹ , Mahmood Alhusseini ¹ , David Vidmar ² , Fatemah Shenasa ¹ , Tina Baykaner ¹ , Junaid Zaman ¹ , David E. Krummen ³ , Paul J. Wang ¹ , Johannes Brachmann ⁴ , John M. Miller ⁵ , Wouter-Jan Rappel ² , Sanjiv M. Narayan ¹ Department of Medicine ¹ , Stanford University; Departments of Physics ² and Medicine ³ , University of California-San Diego; Clinic of Cardiology ⁴ , Klinikum Coburg, Germany; Department of Medicine ⁵ , Indiana University
113	Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex	William E. Allen ^{1,3,4*} , Isaac V. Kauvar ^{2,4*} , Michael Z. Chen ⁴ , Ethan B. Richman ^{1,3,4} , Samuel J. Yang ² , Ken Chan ⁷ , Viviana Gradinaru ⁷ , Benjamin E. Deverman ⁷ , Liqun Luo ^{3,5} , Karl Deisseroth ^{4,5,6} (*equal contribution) Neurosciences Graduate Program ¹ , Electrical Engineering Graduate Program ² , Departments of Biology ³ , Bioengineering ⁴ , and Psychiatry & Behavioral Sciences ⁶ , and Howard Hughes Medical Institute ⁵ , Stanford University; Division of Biology & Bioengineering ⁷ , California Institute of Technology