STANFORD BIO-X
CRYOEM WORKSHOP

SEPTEMBER 24-25, 2019
JAMES H. CLARK CENTER AUDITORIUM
STANFORD UNIVERSITY

@STANFORDBIOX #BIOXCRYOEM
TUESDAY, SEPTEMBER 24TH

8:00 AM
REGISTRATION
CLARK CENTER COURTYARD

8:30 AM
INTRODUCTION
Georgios Skiniotis
Professor of Molecular & Cellular Physiology, of Structural Biology, and of Photon Science, Stanford University
This workshop will provide a thorough introduction to cryoEM and related methodologies with an emphasis on single-particle analysis and reconstruction.

9:00 AM
EM IMAGE FORMATION AND DATA COLLECTION
Yifan Cheng, Professor of Biochemistry & Biophysics, University of California, San Francisco
Abstract:
The first part of my lecture concerns image formation in electron microscope. This includes a brief discussion of electron optic system of a standard electron microscope, image formation theory of weak-phase object, and contrast transfer function. In the second part, I will discuss low-dose imaging in single particle cryo-EM. Last, I will discuss approaches to correct beam-induced image motions.
10:00 AM

CLASSIFICATION AND 3D RECONSTRUCTION WORKFLOW
Georgios Skiniotis, Professor of Molecular & Cellular Physiology, of Structural Biology and of Photon Science, Stanford University

Abstract:
I will outline the principles and general workflow for image processing steps towards cryoEM 3D reconstructions with the main focus on single-particle analysis. Emphasis will be placed on image classification, i.e. the categorization of projections aiming to obtain subsets that can facilitate high resolution information but also different conformations adopted by a macromolecule.

11:00 AM

IMAGE PROCESSING WITH cisTEM
Alexis Rohou, Scientist, Department of Structural Biology, Genentech

Abstract:
cisTEM is a free, open-source cryoEM image processing package which supports a complete workflow from raw movies to a refined three-dimensional map. It is notable for its ease of use and for its speed. It features a single-window graphical user interface, live graphical feedback during job execution, support for massively parallel job distribution across CPU clusters or workstations, and high-resolution refinement algorithms. I will give an overview of the package and introduce features to be released soon, as well as some of the fundamental algorithmic differences between cisTEM and other single-particle image processing packages.

12:00 PM

LUNCH
NEXUS CAFÉ PATIO
Please wear your name tag to be checked in!

1:30 PM

SPECIMEN PREPARATION FOR CRYOEM
Daniel Southworth, Associate Professor of Biochemistry & Biophysics, University of California, San Francisco

Abstract:
Advancements in cryo-EM continue to fuel an explosion of high-resolution macromolecular structures that have previously been unattainable. While these advancements have made atomic resolution feasible, and even routine for many cases, the challenges of preparing a biological sample in a way that is suitable for cryo-EM imaging remain significant. Major challenges include sample purity and instability, conformational and compositional heterogeneity, preferred orientation, and denaturation due to the vitrification process. The goal of this seminar is to broadly cover the major challenges in sample preparation and introduce both well-established and novel methods to improve samples for high resolution structure determination by cryo-EM.
2:30 PM

IMAGE PROCESSING WITH RELION

Cornelius Gati, Panofsky Fellow at SLAC National Accelerator Laboratory and Stanford University

Abstract:
In recent years, the number of high resolution reconstructions from single particle cryoEM has skyrocketed. Not only is it possible to obtain atomic resolution (!) reconstructions from isolated biomolecules — we also observe a trend towards ever smaller proteins that can be imaged, making the technique more amenable to a broad range of biomolecules. RELION is currently the most broadly used software package for high resolution reconstructions in single particle cryoEM. This workshop will cover the question ‘I have my raw images, what now?’, covering all basics of RELION, starting with raw images, motion correction, CTF estimation, classification to final reconstructions. It will also cover common problems and pitfalls during the process. After this course, participants should easily be able to go through a dataset by themselves and join the steadily growing community of electron microscopists.

3:30 PM

BREAK

CLARK CENTER COURTYARD

3:45 PM

MODELING INTO CRYOEM MAPS

Michael Robertson, Postdoctoral Research Fellow, Molecular & Cellular Physiology, Stanford University

Abstract:
In recent years cryoEM has allowed for the determination of the structures of a wide variety of popular drug targets that have been impossible for other methods. However, modeling into cryoEM maps presents several unique challenges inherent to the method. We will discuss the current state of the art methods for model building and refinement into cryoEM maps. GemSpot, a pipeline for the robust identification of chemically reasonable poses of ligands in cryoEM maps, will also be presented. Finally, modeling and refinement techniques will be demonstrated with real world examples of several important drug targets.
Posters Presented:

Engineering Strategies for Testing the Integration of Functional Systems in Living Cells
Anton Jackson-Smith1, Will Roberts1, Drew Endy1
Department of Bioengineering1, Stanford University

Transcription Polymerase-Catalyzed Emergence of Novel RNA Replicons
Nimit Jain1,2,3, Lucas R. Blauch4, Michail R. Szymanski5,6,7, Rhiju Das8, Sindy K. Y. Tang4, Y. Whitney Yin5,6, Andrew Z. Fire1,2
Departments of Pathology1, Genetics1, Bioengineering1, Mechanical Engineering4, and Biochemistry8, Stanford University; Department of Pharmacology & Toxicology1 and Sealy Center for Structural Biology8, University of Texas Medical Branch; Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk2

Lipid-Dependent Gating of G-Protein Coupled Inwardly Rectifying Potassium (GIRK) Channels
Yamuna Kalyani Mathiharan1,2, Ian Glaaser3, Jacob Mahoney3, Paul Slesinger3, Georgios Skiniotis1,2
Departments of Molecular & Cellular Physiology1 and Structural Biology2, Stanford University; Department of Neuroscience3, Icahn School of Medicine, Mount Sinai

Exploring Cryo-EM Latent Space with Variational Autoencoders
Nina Miolane1, Frédéric Poitevin2, Susan Holmes3
Departments of Statistics1 and Structural Biology2, Stanford University

Organisms and Substrates Enabling Community-Based Measurements of Wood-Degrading Fungi
Rolando Perez1, Drew Endy1
Department of Bioengineering1, Stanford University

Convenience Tools to Explore Variability in CryoEM Data
Frédéric Poitevin1, Yee-Ting Li2, Nina Miolane1, Cornelius Gati4, Michael Levitt1
Departments of Structural Biology1 and Statistics2, Stanford University; Stanford-SLAC CryoEM Center2 and SSRL-cryoEM4, SLAC National Laboratory

Bridging the Resolution Gap from Atoms to Human Diseases: A Medical Imaging Perspective
Mirabela Rusu1
Department of Radiology1, Stanford University

Elucidating the Structure and Function of Toxoplasma gondii Invasion Machinery
Li-av Segev-Zarko1, Stella Y. Sun1,2, Peter D. Dahlberg3, Michael F. Schmid1,2, Jesus Galaz-Montoya1,2, W.E. Moerner3, Wah Chiu1,2, John C. Boothroyd1
Departments of Microbiology & Immunology1, Bioengineering2, and Chemistry3, Stanford University

Unraveling Molecular Interactions of the Influenza A Virus Matrix Layer
Lisa Selzer1, Zhaoming Su1,2, Jasmine Mosher1, Wah Chiu1,2, Karla Kirkegaard1,3
Departments of Genetics1, Bioengineering2, and Microbiology & Immunology3, Stanford University

Widespread Differential Expression of Coding Region and 3'UTR Sequences-Functions in Embryonic Stem Cells
Ze Yang1, Shaoyi Ji1, Leonardi Gozali1, Arif Kocabas1,4, Mary Hynes1
Department of Biology1, Stanford University; Rockefeller University2
Wednesday, September 25th

8:30 AM
Registration
Clark Center Courtyard

9:00 AM
Overview of cryoEM Methodologies and Capabilities at SLAC
Wah Chiu, Professor of Photon Science, Bioengineering, and Microbiology & Immunology, Stanford University and SSRL, SLAC National Linear Accelerator Laboratory
Abstract:
We have established three NIH-supported programs for cryoEM research and user data collection facilities for the local, national and international scientific community. Using one 300 keV electron microscope, we are able to determine within a year over 20 near atomic resolution structures spanning from ion channels, chaperonins, toxins, viruses, RNA-protein complexes, RNAs and organic metallic compounds in different biochemical states. We also use our electron microscopes to study cells and small molecule crystals by electron cryo-tomography. Examples will be presented to illustrate these cryoEM applications.

10:00 AM
Computational Set-Up for cryoEM
Alpay Seven, Postdoctoral Research Fellow, Molecular & Cellular Physiology, Stanford University
Abstract:
Cryo electron microscopy is a powerful technique to study mechanism of macromolecular complexes. Recent detector, microscope and single particle processing software developments have made atomic resolution protein structure determination almost routine. Despite the popularity of this technique, the computational setup of the cryo-EM processing software on workstations and/or computer clusters can be challenging. In this workshop, I will demonstrate simple computational setups of some popular cryo-EM processing software. I will also introduce current solutions to tackle computational needs of fast evolving single-particle software platforms and how to efficiently run computationally expensive processing jobs.

10:45 AM
Break
Clark Center Courtyard
11:00 AM

CRYOEM DATA MANAGEMENT

Yee-Ting Li, Science Solutions Architect, SLAC National Accelerator Laboratory

The advancement of new imaging methods and sensor technologies has lead to unprecedented increases in data rates and volumes. I shall present details of how the Stanford/SLAC CryoEM Centre organises and stores data to help create atomic resolution cryoEM maps.

11:30 AM

ACCESSING STANFORD CRYOEM FACILITIES

Elizabeth Montabana, Cryo-Electron Microscopy Scientist, Molecular & Cellular Physiology, Stanford University

Abstract:

You are interested in pursuing a cryo-EM project at Stanford – what next? This session will cover the operations of Stanford’s TEM screening facilities, plunge-freezing equipment, and microscope training. I will discuss scheduling, expectations, and timelines for a standard cryo-EM project. I will talk about applying for Krios time at Stanford-SLAC facility and how to connect with help before and after your data collection.

12:30 PM

CLOSING REMARKS

Georgios Skiniotis

Professor of Molecular and Cellular Physiology, of Structural Biology and of Photon Science, Stanford University
SHARE YOUR EXPERIENCE ON TWITTER!

@STANFORDBIOX #BIOXCRYOEM

SCAN WITH YOUR PHONE CAMERA FOR
A DIGITAL VERSION OF THIS BROCHURE

STANFORD BIO-X

contact-biox@stanford.edu
www.biox.stanford.edu