Welcome to the biweekly electronic newsletter from the Bio-X Program at Stanford University for members of the Bio-X Corporate Forum. Please contact us if you would like to be added or removed from this distribution list, or if you have any questions about Bio-X or Stanford.
Seed Grant Program
SEED GRANTS FOR SUCCESS - Stanford Bio-X Interdisciplinary Initiatives Program (IIP)
The Bio-X Interdisciplinary Initiatives Program represents a key Stanford Initiative to address challenges in human health. The IIP awards approximately $3 million every other year in the form of two-year grants averaging about $150,000 each. From its inception in 2000 through the fifth round in 2010, the program has provided critical early-stage funding to 114 different interdisciplinary projects, involving collaborations from over 300 faculty members, and creating over 450 teams from five different Stanford schools. From just the first 4 rounds, the IIP awards have resulted in a 10-fold-plus return on investment, as well as hundreds of publications, dozens of patents filed, and most importantly, the acceleration of scientific discovery and innovation.
** THE LIST OF 23 NEW AWARDEES FOR OUR 6TH ROUND OF SEED GRANTS ARE NOW LISTED ON THE BIO-X WEBSITE. Please go here to view the list of awardees, along with the titles of their projects and the abstracts of the research. Competition was intense as the awardees were chosen from 118 Letters of Intent (LOIs). Selection criteria included innovation, high-reward, and interdisciplinary collaboration. To view the 114 other IIP projects that have been funded from the first 5 rounds, please click here.
** On Monday, August 27, 2012, Bio-X held one of its 2 annual IIP Seed Grant symposiums at the Clark Center Auditorium, which showcases some of the awarded seed grant projects. The symposium was a success with 8 podium presentations, 154 poster presentations, and over 200 attendants. The recorded talks are now posted online here. Previously recorded talks are here.
We are cultivating and are highly successful in building meaningful collaborations with numerous corporate colleagues. New collaborations through our seed grant projects are highly encouraged. To learn about how to get involved, please contact Dr. Hanwei Li or Dr. Heideh Fattaey.
Fellowships
Every year, graduate students and postdoctoral scholars of Bio-X affiliated faculty are highly encouraged to apply for the Bio-X Fellowships, which are awarded to research projects that are interdisciplinary and utilize the technologies of different fields to solve different biological questions. Students are encouraged to work collaboratively with professors of different departments, thus creating cross-disciplinary relationships among the different Stanford schools. Our fellows have conducted exciting research, resulting in publications in high-impact journals and have been offered excellent positions in industry and academia.
** On Thursday June 21, 2012, our 18 newest Bio-X Fellowship awardees were announced at the BIO-X FELLOWS SYMPOSIUM. The symposium also consisted of four 15-minute presentations and thirty-five 1-minute research introductions that truly demonstrated the synergy of different yet distinctive disciplines, merged together to address various life bioscience questions. To date, we now have a total of 126 Bio-X Fellows. To view the numerous projects that have been awarded over the years, please click here.
Many fruitful collaborations and relationships have been established with industry through these fellowships. Please contact Dr. Hanwei Li or Dr. Heideh Fattaey if you'd like to learn more about how to get involved with the Bio-X Fellowships.
News
Researchers develop new technique for visualizing blood flow
Bio-X Affiliated Faculty Hongjie Dai and John Cooke
Stanford scientists have developed a fluorescence imaging technique that allows them to view the pulsing blood vessels of living animals with unprecedented clarity. Compared with conventional imaging techniques, the increase in sharpness is akin to wiping fog off your glasses. The technique, called near infrared-2 imaging, or NIR-2, involves first injecting water-soluble carbon nanotubes into the living subject's bloodstream. The researchers then shine a laser (its light is in the near-infrared range, a wavelength of about 0.8 micron) over the subject; in this case, a mouse. The light causes the specially designed nanotubes to fluoresce at a longer wavelength of 1-1.4 microns, which is then detected to determine the blood vessels' structure. That the nanotubes fluoresce at substantially longer wavelengths than conventional imaging techniques is critical in achieving the stunningly clear images of the tiny blood vessels: longer wavelength light scatters less, and thus creates sharper images of the vessels. Another benefit of detecting such long wavelength light is that the detector registers less background noise since the body does not does not produce autofluorescence in this wavelength range. In addition to providing fine details, the technique — developed by Stanford scientists Hongjie Dai, PhD, professor of chemistry; John Cooke, MD, PhD, professor of cardiovascular medicine; and Ngan Huang, PhD, acting assistant professor of cardiothoracic surgery — has a fast image acquisition rate, allowing researchers to measure blood flow in near real time. The work was published online Nov. 18 in Nature Medicine.
Embryo-analysis technique developed at Stanford may boost in vitro fertilization success
Bio-X Affiliated Faculty Renee Reijo Pera
Stanford University School of Medicine researchers have devised a two-part approach to identify developing human embryos most likely to result in successful pregnancies. The technique could transform the lives of infertile couples seeking to use in vitro fertilization, or IVF, to start a family. The research suggests that fragmentation — a common but not well-understood occurrence in the early stages of human development in which some of the cells in an embryo appear to break down into smaller particles — is often associated with a lethal loss or gain of genetic material in an embryo's cells. Coupling a dynamic analysis of fragmentation with an analysis of the timing of the major steps of embryonic development can significantly increase the chances of selecting an embryo with the correct number of chromosomes, the researchers found. The findings extend beyond IVF and offer a glimpse into how human reproduction differs from that of many other animals. They also suggest that sperm selection could be much more important than previously believed. "It is amazing to me that 70 to 80 percent of all human embryos have the wrong number of chromosomes," said Renee Reijo Pera, PhD, professor of obstetrics and gynecology. "But less than 1 percent of all mouse embryos are similarly affected. We're trying to figure out what causes all these abnormalities." Reijo Pera, who is the director of the Center for Human Embryonic Stem Cell Research and Education at Stanford's Institute for Stem Cell Biology and Regenerative Medicine, is the senior author of the work, published online Dec. 4 in Nature Communications. Research associate Shawn Chavez, PhD, is the study's first author.
Researchers discover master regulator of skin development
Bio-X Affiliated Faculty Paul Khavari
The surface of your skin, called the epidermis, is a complex mixture of many different cell types — each with a very specific job. The production, or differentiation, of such a sophisticated tissue requires an immense amount of coordination at the cellular level, and glitches in the process can have disastrous consequences. Now, researchers at the Stanford University School of Medicine have identified a master regulator of this differentiation process. “Disorders of epidermal differentiation, from skin cancer to eczema, will affect roughly one-half of Americans at some point in their lifetimes,” said Paul Khavari, MD, PhD. “Understanding how this differentiation occurs has enormous implications, not just for the treatment of disease, but also for studies of tissue regeneration and even stem cell science.” Khavari is the Carl J. Herzog Professor and chair of the Department of Dermatology. Khavari and his colleagues have found that, like a traffic cop motioning cars to specific parking spaces in a large, busy lot, a newly identified molecule called TINCR is required to direct precursor cells down pathways toward particular developmental fates. It does so by binding to and stabilizing differentiation-specific genetic messages called messenger RNAs. Blocking TINCR activity, the researchers found, stopped the differentiation of all epidermal cells. “This is an entirely unique mechanism, which sheds light on a previously invisible portion of the regulation of this process,” said Khavari, who is also a member of the Stanford Cancer Institute and chief of the dermatology service at the Veterans Affairs Palo Alto Health Care System. He is the senior author of the research, published online Dec. 2 in Nature.
New optical tweezers trap specimens just a few nanometers across
Materials Science and Engineering Faculty Jennifer Dionne
To grasp and move microscopic objects, such as bacteria and the components of living cells, scientists can harness the power of concentrated light to manipulate them without ever physically touching them. Now, doctoral student Amr Saleh and Assistant Professor Jennifer Dionne, researchers at the Stanford School of Engineering, have designed an innovative light aperture that allows them to optically trap smaller objects than ever before – potentially just a few atoms in size. The process of optical trapping – or optical tweezing, as it is often known – involves sculpting a beam of light into a narrow point that produces a strong electromagnetic field. The beam attracts tiny objects and traps them in place, just like a pair of tweezers. Unfortunately, there are natural limits to the technique. The process breaks down for objects significantly smaller than the wavelength of light. Therefore, optical tweezers cannot grasp super-small objects like individual proteins, which are only a couple of nanometers in diameter. Saleh and Dionne have shown theoretically that light passed through their novel aperture would stably trap objects as small as 2 nanometers. The design was published in the journal Nano Letters, and Saleh is now building a working prototype of the microscopic device.
Events
Cardiovascular Institute December 11, 2012, 12 pm - 1 pm 291 Campus Dr. LKSC Building 2nd floor, Paul Berg Hall, Stanford, CA Panel Discussion - "Innovating and Developing New Therapies: From Conception to Company Formation to Clinical Trials" Presenter: John Cooke, MD, PhD, Stanford |
Developmental Biology December 12, 2012, 4 pm - 5 pm Clark Center Auditorium, Stanford, CA Frontiers in Biology - "Molecular mechanisms and physiological functions of autophagy" Speaker: Beth Levine, MD, UT Southwestern |
Nanobiotechnology Seminar Series December 13, 2012, 5:30 pm - 6:30 pm Li Ka Shing Center, Room 130, Stanford, CA Polymeric Micelles and Polyiion Complexes for Drug Delivery: State-of-Art and Future Directions Speaker: Alexander V. Kabanov, PhD, DrSc, University of North Carolina |
Chemical and Systems Biology December 18, 2012, 2 pm - 3 pm LKSC 130, Stanford, CA Architecture and dynamics of transcription factor regulatory networks Speaker: John Stamatoyannopoulos, PhD |
MI Seminar Some Wednesdays 10 am, Oct 2012 - May 2013 An exciting program in medical imaging research Jan - Dan Spielman - Metabolic Imaging of the Heart using Hyperpolarized 13C MRS Feb 20 - Jennifer McNab - Initial Applications of 300 mT/m Gradients April 17 - Edward Shapiro - The History of CT Reseach at Varian- from the mid-70s' to today May 22 - Anthony Wagner - Cognitive Neuroscience of Remembering: fMRI approaches to Understanding Memory |
Resources
Stanford University |
Bio-X at Stanford University |
Bio-X Seed Grants The Bio-X Interdisciplinary Initiatives Program (IIP) provides seed funding for high-risk, high-reward, collaborative projects across the university, and have been highly successful in fostering transformative research. |
Office of Technology and Licensing "Techfinder" Search the OTL Technology Portal to find technologies available for licensing from Stanford. |
Stanford Center for Professional Development - Take advantage of your FREE membership! - Take online graduate courses in engineering, leadership and management, bioscience, and more. - Register for free webinars and seminars, and gets discounts on courses. |
Stanford Biodesign Video Tutorials on how FDA approves medical devices A series of video briefs recently produced by the Stanford Biodesign Program teaches innovators how to get a medical device approved for use in the United States. This free, online library of 60 videos provides detailed information on the Food and Drug Administration regulatory process, short case studies and advice on interacting with the FDA. |
To learn more about Bio-X or Stanford University, please contact Dr. Hanwei Li, the Corporate Forum Liaison of Bio-X, at 650-725-1523 or lhanwei1@stanford.edu, or Dr. Heideh Fattaey, the Executive Director of Bio-X Operations and Programs, at 650-799-1608 or hfattaey@stanford.edu.