Welcome to the biweekly electronic newsletter from Stanford Bio-X for members of the Bio-X Corporate Forum. Please contact us if you would like to be added or removed from this distribution list, or if you have any questions about Stanford Bio-X or Stanford University.
On October 9, 2013, Bio-X celebrated the 10th Anniversary of the James H. Clark Center, the hub of Bio-X. Check out CLARK CENTER @ 10X on the SPLASH PAGE as well as the Bio-X Timeline over the last 15 years!!

Seed Grants

SEED GRANTS FOR SUCCESS - Stanford Bio-X Interdisciplinary Initiatives Program (IIP)

The Bio-X Interdisciplinary Initiatives Program represents a key Stanford Initiative to address challenges in human health. The IIP awards approximately $3 million every other year in the form of two-year grants averaging about $150,000 each. From its inception in 2000 through the fifth round in 2010, the program has provided critical early-stage funding to 114 different interdisciplinary projects, involving collaborations from over 300 faculty members, and creating over 450 teams from five different Stanford schools. From just the first 5 rounds, the IIP awards have resulted in a 10-fold-plus return on investment, as well as hundreds of publications, dozens of patents filed, and most importantly, the acceleration of scientific discovery and innovation.

In 2012, Stanford Bio-X selected 23 new seed grant projects as the winners of the 6th round. Please go here to view the list of awardees, along with the titles of their projects and the abstracts of the research. Competition was intense as the awardees were chosen from 118 Letters of Intent (LOIs). Selection criteria included innovation, high-reward, and interdisciplinary collaboration. (To view the 114 other IIP projects that have been funded from the first 5 rounds, please click here.) In addition, SANOFI has also funded 4 new Bio-X IIP Seed Grant projects from round 6!

On Monday, August 26, 2013, Bio-X had its second annual IIP Symposium of the year at the Clark Center, which highlights projects that exemplify the Stanford Bio-X mission of crossing boundaries to bring about interdisciplinary research and solutions in the field of life bioscience. The symposium was a huge success with over 300 people attending this event, which included 8 oral presentations and 136 poster presentations. Recorded talks from the symposium will be uploaded soon. If you'd like to view the talks for previous symposia through the years, please click here.

We are cultivating and are highly successful in building meaningful collaborations with numerous corporate colleagues. New collaborations through our seed grant projects are highly encouraged. To learn about how to get involved, please contact Dr. Hanwei Li or Dr. Heideh Fattaey.


Fellowships

BIO-X FELLOWSHIPS

Every year, graduate students and postdoctoral scholars of Bio-X affiliated faculty are highly encouraged to apply for the Bio-X Fellowships, which are awarded to research projects that are interdisciplinary and utilize the technologies of different fields to solve different biological questions. Students are encouraged to work collaboratively with professors of different departments, thus creating cross-disciplinary relationships among the different Stanford schools. Our fellows have conducted exciting research, resulting in publications in high-impact journals and have been offered excellent positions in industry and academia. To date, Stanford Bio-X has a total of 152 Fellows.

On June 26th, Bio-X held its annual Bio-X Fellows Symposium, where there were four 15-minute oral presentations followed by one-minute spiels from current fellows. The 25 newest fellows selected this year were also announced, and about 100 attendees came to the symposium. Please click on the "Bio-X Fellows Symposium" link above for the agenda and titles of the talks, and on the icon of the brochure above for the updated and latest Bio-X Fellowships brochure.

To view the numerous projects that have been awarded over the years, please click here.

 

 

BIO-X UNDERGRADUATE SUMMER RESEARCH PROGRAM

 

 

The Bio-X Undergraduate Summer Research Program supports undergraduate research training through an award designed to support interdisciplinary undergraduate summer research projects. The program is an invaluable opportunity for students to conduct hands-on research, learn how to carry out experiments in the laboratory, and develop the skills to read and analyze scientific literature.

This program is eligible to Stanford students who want to work in the labs of Bio-X affiliated faculty. To date, 241 students have been awarded the opportunity to participate in the Bio-X Undergraduate Summer Research Program. This summer is Stanford Bio-X's 8th round of USRP.

Participating undergraduates are also required to present poster presentations on the research that they've conducted during the program. Please click here for title lists of past posters that our undergraduates have presented.

Many fruitful collaborations and relationships have been established with industry through fellowships. Please contact Dr. Hanwei Li or Dr. Heideh Fattaey if you'd like to learn more about how to get involved with these fellowship programs.

 


News

Method of recording brain activity could lead to 'mind-reading' devices, scientists say
Bio-X Affiliated Faculty Josef Parvizi
Bio-X NeuroVentures Funded Project

A brain region activated when people are asked to perform mathematical calculations in an experimental setting is similarly activated when they use numbers — or even imprecise quantitative terms, such as “more than”— in everyday conversation, according to a study by Stanford University School of Medicine scientists. Using a novel method, the researchers collected the first solid evidence that the pattern of brain activity seen in someone performing a mathematical exercise under experimentally controlled conditions is very similar to that observed when the person engages in quantitative thought in the course of daily life. “We’re now able to eavesdrop on the brain in real life,” said Josef Parvizi, MD, PhD, associate professor of neurology and neurological sciences and director of Stanford’s Human Intracranial Cognitive Electrophysiology Program. Parvizi is the senior author of the study, published Oct. 15 in Nature Communications. The study’s lead authors are postdoctoral scholar Mohammad Dastjerdi, MD, PhD, and graduate student Muge Ozker. The finding could lead to “mind-reading” applications that, for example, would allow a patient who is rendered mute by a stroke to communicate via passive thinking. Conceivably, it could also lead to more dystopian outcomes: chip implants that spy on or even control people’s thoughts.

Researchers demonstrate efficient method for converting fat cells to liver cells
Bio-X Affiliated Faculty Gary Peltz

In a feat of modern-day alchemy with huge potential for regenerative medicine, Stanford University School of Medicine scientists have developed a fast, efficient way to turn cells extracted from routine liposuction into liver cells. The advance is described in a study published Oct. 21 in Cell Transplantation. The scientists performed their experiments in mice, but the adipose stem cells they used came from human liposuction aspirates and became human, liver-like cells that flourished inside the mice’s bodies. This method is distinct from those producing liver cells from embryonic stem cells or induced pluripotent stem cells. Although iPS and embryonic stem cells are pluripotent — they can, in principle, differentiate into every cell type — they carry a palpable risk of forming tumors. However, the cells produced using this new technique, which involves no intermediate pluripotent phase, show no signs of being tumorogenic. The liver is the body’s chemistry set. It builds complex biomolecules we need, and it filters and breaks down waste products and toxic substances that might otherwise accumulate to dangerous levels. Unlike most other organs, a healthy liver can regenerate itself to a significant extent. But this capacity cannot overcome acute liver poisoning or damage from chronic alcoholism or viral hepatitis. Acute liver failure from acetaminophen alone takes about 500 lives annually and accounts for close to 60,000 emergency-room visits and more than 25,000 hospitalizations annually. Other environmental toxins, including poisonous mushrooms, contribute still more cases. All aspects of the new fat-to-liver technique are adaptable for human use, said Gary Peltz, MD, PhD, professor of anesthesia and the study’s senior author. Creating iPS cells requires introducing foreign and potentially carcinogenic genes. But adipose stem cells merely have to be harvested from fat tissue. The process takes nine days from start to finish — fast enough to regenerate liver tissue in acute liver poisoning victims, who would otherwise die within a few weeks, barring liver transplantation.

Stanford-developed algorithm reveals complex protein dynamics behind gene expression
Bio-X Affiliated Faculty Michael Snyder

In yet another coup for a research concept known as “big data,” researchers at the Stanford University School of Medicine have developed a computerized algorithm to understand the complex and rapid choreography of hundreds of proteins that interact in mindboggling combinations to govern how genes are flipped on and off within a cell. To do so, they coupled findings from 238 DNA-protein-binding experiments performed by the ENCODE project — a massive, multiyear international effort to identify the functional elements of the human genome — with a laboratory-based technique to identify binding patterns among the proteins themselves. The analysis is sensitive enough to have identified many previously unsuspected, multipartner trysts. It can also be performed quickly and repeatedly to track how a cell responds to environmental changes or crucial developmental signals. “At a very basic level, we are learning who likes to work with whom to regulate around 20,000 human genes,” said Michael Snyder, PhD, professor and chair of genetics at Stanford. “If you had to look through all possible interactions pair-wise, it would be ridiculously impossible. Here we can look at thousands of combinations in an unbiased manner and pull out important and powerful information. It gives us an unprecedented level of understanding.” Snyder is the senior author of a paper describing the research published Oct. 24 in Cell. The lead authors are postdoctoral scholars Dan Xie, PhD, Alan Boyle, PhD, and Linfeng Wu, PhD.

Bee sting allergy could be a defense response gone haywire, scientists say
Bio-X Affiliated Faculty Stephen Galli

For most people, a bee sting causes temporary pain and discomfort, but for those with a bee venom allergy, the consequences can be devastating: They experience anaphylactic shock, including a drop in blood pressure, itchy hives and breathing problems, and may die if not promptly treated. New findings by Stanford University School of Medicine scientists may provide an evolutionary explanation for severe allergic reactions. In a paper published online Oct. 24 in Immunity, the researchers show that mice injected with a small dose of bee venom were later resistant to a potentially lethal dose of the same venom. The study is the first experimental evidence that the same immune response involved in allergies may have evolved to serve a protective role against toxins. The study builds on earlier work by the researchers, characterizing the innate immune response to snake venom and honeybee venom. Innate immune responses occur in subjects exposed to a foreign substance, such as a pathogen or a toxic material like venom, for the first time. Immune cells called mast cells, which reside in most of the body’s tissues, are poised to unleash signals that turn on defense responses when a pathogen or toxin intrudes. In a previous study, the researchers found that mast cells produce enzymes that can detoxify components of snake venom, and that mast cells can also enhance innate resistance to honeybee venom.

 


Events

Immunology
October 29, 2013, 4:15 pm - 5:15 pm
Alway M106, Stanford, CA
"Interplay of IL-2, Tregs and ILCs in Autoimmunity"
Speaker: Jeffrey Bluestone, PhD, University of California, San Francisco
Developmental Biology
October 30, 2013, 4 pm - 5 pm
Clark Center Auditorium, Stanford , CA
Frontiers In Biology - title TBA
Speaker: Stephen Quake, PhD, Stanford
Bio-X Seminar
October 31, 2013, 3:15 pm - 4:15 pm
Clark Center, Stanford, CA
"Computational modeling of the human cornea: transparency, metabolism, strength and shape"
Speaker: Peter Pinsky, PhD, Stanford
Cardiovascular Institute
November 5, 2013, 12 pm - 1 pm
LKSC 120, Stanford, CA
Frontiers in Cardiovascular Science
Speaker: Mark E. Anderson, MD, PhD, UI Cardiovascular Research Center

Resources

Stanford University
Stanford Bio-X
Bio-X Seed Grants
The Stanford Bio-X Interdisciplinary Initiatives Program (IIP) provides seed funding for high-risk, high-reward, collaborative projects across the university, and have been highly successful in fostering transformative research.
Office of Technology and Licensing "Techfinder"
Search the OTL Technology Portal to find technologies available for licensing from Stanford.
Stanford Center for Professional Development
- Take advantage of your FREE membership!
- Take online graduate courses in engineering, leadership and management, bioscience, and more.
- Register for free webinars and seminars, and gets discounts on courses.
Stanford Biodesign Video Tutorials on how FDA approves medical devices
A series of video briefs recently produced by the Stanford Biodesign Program teaches innovators how to get a medical device approved for use in the United States. This free, online library of 60 videos provides detailed information on the Food and Drug Administration regulatory process, short case studies and advice on interacting with the FDA.

To learn more about Stanford Bio-X or Stanford University, please contact Dr. Hanwei Li, the Bio-X Corporate Forum Liaison, at 650-725-1523 or lhanwei1@stanford.edu, or Dr. Heideh Fattaey, the Executive Director of Bio-X Operations and Programs, at 650-799-1608 or hfattaey@stanford.edu.

Release Date: 
October 28, 2013