Welcome to the biweekly electronic newsletter from the Bio-X Program at Stanford University for members of the Bio-X Corporate Forum. Please contact us if you would like to be added or removed from this distribution list, or if you have any questions about Bio-X or Stanford.

Seed Grant Program

SEED GRANTS FOR SUCCESS - Stanford Bio-X Interdisciplinary Initiatives Program (IIP)

The Bio-X Interdisciplinary Initiatives Program represents a key Stanford Initiative to address challenges in human health. The IIP awards approximately $3 million every other year in the form of two-year grants averaging about $150,000 each. From its inception in 2000 through the fifth round in 2010, the program has provided critical early-stage funding to 114 different interdisciplinary projects, involving collaborations from over 300 faculty members, and creating over 450 teams from five different Stanford schools. From just the first 4 rounds, the IIP awards have resulted in a tenfold-plus return on investment, as well as hundreds of publications, dozens of patents filed, and most importantly, the acceleration of scientific discovery and innovation.

WE ARE CURRENTLY IN THE PROCESS OF REVIEWING THE 118 BIO-X INTERDISCIPLINARY INITIATIVE SEED GRANT LETTERS OF INTENT THAT WE'VE RECEIVED FOR OUR 6TH ROUND. Competition is intense, and the criteria for the proposals include innovation, high-reward, and interdisciplinary collaboration. To view the 114 different projects that have been funded from the first 5 rounds, please click here.

On February 13, 2012, we held one of our two annual IIP symposia at the Clark Center, which showcases the awarded seed grant projects. Over 150 attendants were present for the 8 podium presentations and 103 poster presentations. The recorded talks are now online.

We are cultivating and are highly successful in building meaningful collaborations with numerous corporate colleagues. New collaborations through our seed grant projects are highly encouraged. To learn about how to get involved, please contact Dr. Hanwei Li or Dr. Heideh Fattaey.




Every year, graduate students and postdoctoral scholars of Bio-X affiliated faculty are highly encouraged to apply for the Bio-X Fellowships, which are awarded to research projects that are interdisciplinary and utilizes the technologies of different fields to solve different biological questions. Students are encouraged to work collaboratively with professors of different departments, thus creating cross-disciplinary relationships among the different Stanford schools. Our fellows have conducted exciting research, resulting in publications in high-impact journals and excellent jobs in industry and academia.

Currently, we are reviewing our 9th call of Bio-X Fellowships proposals. Competition is intense, with only ~15% of proposals accepted each year. To view the numerous projects that have been awarded over the years, please click here.

Many fruitful collaborations and relationships have been established with industry through these fellowships. Please contact Dr. Hanwei Li or Dr. Heideh Fattaey if you'd like to learn more about how to get involved with the Bio-X Fellowships.



Scientists create nanoparticles that home in on brain tumor, increasing accuracy of surgical removal
Bio-X Affiliated Faculty Sam Gambhir
Like special-forces troops laser-tagging targets for a bomber pilot, tiny particles that can be imaged three different ways at once have enabled Stanford University School of Medicine scientists to remove brain tumors from mice with unprecedented accuracy. In a study published online April 15 in Nature Medicine, a team led by Sam Gambhir, MD, PhD, professor and chair of radiology, showed that the minuscule nanoparticles engineered in his lab homed in on and highlighted brain tumors, precisely delineating their boundaries and greatly easing their complete removal. The new technique could someday help improve the prognosis of patients with deadly brain cancers. ... “With brain tumors, surgeons don’t have the luxury of removing large amounts of surrounding normal brain tissue to be sure no cancer cells are left,” said Gambhir, who is the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and director of the Molecular Imaging Program at Stanford. “You clearly have to leave as much of the healthy brain intact as you possibly can.” This is a real problem for glioblastomas, which are particularly rough-edged tumors. In these tumors, tiny fingerlike projections commonly infiltrate healthy tissues, following the paths of blood vessels and nerve tracts. An additional challenge is posed by micrometastases: minuscule tumor patches caused by the migration and replication of cells from the primary tumor. Micrometastases dotting otherwise healthy nearby tissue but invisible to the surgeon’s naked eye can burgeon into new tumors. Although brain surgery today tends to be guided by the surgeon’s naked eye, new molecular imaging methods could change that, and this study demonstrates the potential of using high-technology nanoparticles to highlight tumor tissue before and during brain surgery.

Scientists use public-database search to identify novel receptor with key role in type-2 diabetes
Bio-X Affiliated Faculty Atul Butte
Using computational methods, Stanford University School of Medicine investigators have strongly implicated a novel gene in the triggering of type-2 diabetes. Their experiments in lab mice and in human blood and tissue samples further showed that this gene not only is associated with the disease, as predicted computationally, but is also likely to play a major causal role. In a study published online April 9 in Proceedings of the National Academy of Sciences, the researchers combed through freely accessible public databases storing huge troves of results from thousands of earlier experiments. They identified a gene never before linked to type-2 diabetes, a life-shortening disease that affects 4 percent of the world’s population. These findings have both diagnostic and therapeutic implications. The study’s senior author is Atul Butte, MD, PhD, associate professor and chief of systems medicine in pediatrics; its first author is Keiichi Kodama, MD, PhD, a staff research scientist in Butte’s group.

Tiny fish bares all: New insights on evolution from study of sticklebacks
Bio-X Affiliated Faculty David Kingsley
To the uninitiated, the tiny threespine stickleback might look like nothing more than a scruffy anchovy with an attitude. But this tough little fish, with its characteristic finny mohawk, is a darling of evolutionary biologists. That’s because it exhibits some of the most recent, and most dramatic, adaptive changes of any animal alive today. Flourishing in fresh water or salty, appearing ponderously armored or slippery sleek, light-skinned or dark, this plucky pisces has made itself so uniquely at home in countless lakes, streams and oceans that early naturalists initially classified it as more than 50 separate species. It’s the ultimate changeling. Now researchers at the Stanford University School of Medicine and the Broad Institute have analyzed the whole-genome sequence of 21 threespine sticklebacks chosen from geographic locations around the world. The findings, which will appear in the April 5 issue of Nature, better identify which regions of the genome are responsible for the stickleback’s many variations. ... “This addresses a classic debate in evolutionary biology,” said professor of developmental biology David Kingsley, PhD, the study’s senior author. “How do new traits evolve in natural populations? Do they arise through mutations in the coding regions of genes, which alter the structure and function of encoded proteins? Or are new traits the result of modifications in the regulatory regions of genes, which control where and when already-established proteins are expressed?”

New genetic regions linked to bone-weakening disease and fractures, researcher says
Faculty Member in Medicine John Ioannidis
Thirty-two previously unidentified genetic regions associated with osteoporosis and fracture have been identified by a large, worldwide consortium of researchers, including Stanford Prevention Research Center chief John Ioannidis, MD, DSc. Variations in the DNA sequences in these regions confer either risk or protection from the bone-weakening disease. Many, but not all, of the regions encode proteins involved in pathways known to involve bone health. The research shows that osteoporosis results from the combined contributions of dozens, if not hundreds, of genes. It also suggests many new avenues for anti-osteoporosis drug development. “We’re learning that the genetic architecture of disease is very complex,” said Ioannidis, who is one of seven senior authors of the study and the methodological leader of the consortium. The research was published online April 15 in Nature Genetics. The unprecedented prospective meta-analysis — which involved 17 genome-wide association studies, 180 researchers and more than 100,000 participants — also identified six regions strongly correlated with the risk of fractures of the femur or lower back. However, the predictive power of the study for individuals is relatively low: Those with multiple risk-increasing variants are only about three to four times more likely than those with the fewest variants to have lower bone mineral density and experience fractures. ... Although factors such as body weight, build and gender are currently much more predictive of osteoporosis than any of the genetic variants identified in the study, the research identified many pathways involved in bone health. The biological relevance of the findings was confirmed by the fact that some of the pathways are already targeted by current anti-osteoporosis drugs. Other, previously unsuspected pathways will help researchers understand more about the disease and how to develop drugs to fight it.



Cardiovascular Institute
April 17, 2012, 12 pm - 1 pm
Li Ka Shing Center, Paul Berg Hall, Stanford, CA
"iPSC for Cardiac Disease Modeling and Cell Therapy"
Speaker: Joseph Wu, MD, PhD, Professor of Stanford University
Developmental Biology
April 18, 2012, 4 pm - 5 pm
Clark Center Auditorium, Stanford, CA
FRONTIERS IN BIOLOGY - "Wnt signaling and asymmetric divisions of stem cells"
Speakers: Roel Nusse, PhD, Professor of Stanford University
April 26, 2012, 3 pm - 4 pm
Munzer Auditorium, Stanford, CA
FRONTIERS IN GENE & MOLECULAR THERAPIES - "Assessing the Relationship Between microRNA & Target Concentration"
Speaker: Brian Brown, PhD, Professor of Mt. Sinai Medical Center
Nanobiotechnology Seminar Series
May 10, 2012, 5:30 pm - 6:30 pm
Li Ka Shing Center, Room 130, Stanford, CA
"Quantitative Profiling of Cancer Biomarkers and Biomedical Imaging using Quantum Dots"
Speaker: Peter Searson, PhD, Professor of Johns Hopkins University



Stanford University
Bio-X at Stanford University
Bio-X Seed Grants
The Bio-X Interdisciplinary Initiatives Program (IIP) provides seed funding for high-risk, high-reward, collaborative projects across the university, and have been highly successful in fostering transformative research.
Office of Technology and Licensing "Techfinder"
Search the OTL Technology Portal to find technologies available for licensing from Stanford.
Stanford Center for Professional Development
- Take advantage of your FREE membership!
- Take online graduate courses in engineering, leadership and management, bioscience, and more.
- Register for free webinars and seminars, and gets discounts on courses.
Stanford Biodesign Video Tutorials on how FDA approves medical devices
A series of video briefs recently produced by the Stanford Biodesign Program teaches innovators how to get a medical device approved for use in the United States. This free, online library of 60 videos provides detailed information on the Food and Drug Administration regulatory process, short case studies and advice on interacting with the FDA.

To learn more about Bio-X or Stanford University, please contact Dr. Hanwei Li, the Corporate Forum Liaison of Bio-X, at 650-725-1523 or lhanwei1@stanford.edu, or Dr. Heideh Fattaey, the Executive Director of Bio-X Operations and Programs, at 650-799-1608 or hfattaey@stanford.edu.

Release Date: 
April 16, 2012