Welcome to the biweekly electronic newsletter from Stanford Bio-X for members of the Bio-X Corporate Forum. Please contact Dr. Hanwei Li, the Bio-X Corporate Forum Liaison if you would like to be added or removed from this distribution list, or if you have any questions about Stanford Bio-X or Stanford University.

Highlights

** On October 9, 2013, Bio-X celebrated the 10th Anniversary of the James H. Clark Center, the hub of Bio-X. Check out CLARK CENTER @ 10X as well as the Bio-X Timeline over the last 15 years!!

** Check out the article by Stanford President John Hennessy in the Nov/Dec 2013 issue of the Stanford Magazine on Bio-X and the Clark Center, "A Cauldron of Innovation".


Seed Grants

**UPDATE: Bio-X has closed the 7th RFP for its IIP Seed Grants, and review of the 141 Letters of Intent is underway!

SEED GRANTS FOR SUCCESS - Stanford Bio-X Interdisciplinary Initiatives Program (IIP)

The Bio-X Interdisciplinary Initiatives Program represents a key Stanford Initiative to address challenges in human health. The IIP awards approximately $3 million every other year in the form of two-year grants averaging about $150,000 each. From its inception in 2000 through the fifth round in 2010, the program has provided critical early-stage funding to 114 different interdisciplinary projects, involving collaborations from over 300 faculty members, and creating over 450 teams from five different Stanford schools. From just the first 5 rounds, the IIP awards have resulted in a 10-fold-plus return on investment, as well as hundreds of publications, dozens of patents filed, and most importantly, the acceleration of scientific discovery and innovation.

In 2012, Stanford Bio-X selected 23 new seed grant projects as the winners of the 6th round. Please go here to view the list of awardees, along with the titles of their projects and the abstracts of the research. Competition was intense as the awardees were chosen from 118 Letters of Intent (LOIs). Selection criteria included innovation, high-reward, and interdisciplinary collaboration. (To view the 114 other IIP projects that have been funded from the first 5 rounds, please click here.) In addition, SANOFI has also funded 4 new Bio-X IIP Seed Grant projects from round 6!

We are cultivating and are highly successful in building meaningful collaborations with numerous corporate colleagues. New collaborations through our seed grant projects are highly encouraged. To learn about how to get involved, please contact Dr. Hanwei Li or Dr. Heideh Fattaey.

IIP Seed Grants-Related Events

** On Monday, March 3, 2014, Bio-X had a Poster Session, featuring 105 different posters from research by all scientists within the Stanford Bio-X community. Over 250 people attended the session, which allowed for an excellent venue to discuss science and research with colleagues from both academia and industry.

** On Monday, August 26, 2013, Bio-X had its second annual IIP Symposium of the year at the Clark Center, which highlights projects that exemplify the Stanford Bio-X mission of crossing boundaries to bring about interdisciplinary research and solutions in the field of life bioscience. The symposium was a huge success with over 300 people attending this event, which included 8 oral presentations and 136 poster presentations. Recorded talks from the symposium will be uploaded soon. If you'd like to view the talks for previous symposia through the years, please click here.


Fellowships

**UPDATE: Bio-X has just announced its 19 new fellows for the 10th year of the Bio-X Fellowships!!

BIO-X FELLOWSHIPS

Every year, graduate students and postdoctoral scholars of Bio-X affiliated faculty are highly encouraged to apply for the Bio-X Fellowships, which are awarded to research projects that are interdisciplinary and utilize the technologies of different fields to solve different biological questions. Students are encouraged to work collaboratively with professors of different departments, thus creating cross-disciplinary relationships among the different Stanford schools. Our fellows have conducted exciting research, resulting in publications in high-impact journals and have been offered excellent positions in industry and academia.

To date, with the 19 new awardees, Stanford Bio-X has a total of 174 Fellows.

You can view the numerous Fellowship projects that have been awarded over the years as well as oral presentations from previous symposiums here.



**UPDATE: The 9th annual Bio-X USRP officially started last week with 65 new awardees!!

BIO-X UNDERGRADUATE SUMMER RESEARCH PROGRAM

The Bio-X Undergraduate Summer Research Program supports undergraduate research training through an award designed to support interdisciplinary undergraduate summer research projects. The program is an invaluable opportunity for students to conduct hands-on research, learn how to carry out experiments in the laboratory, and develop the skills to read and analyze scientific literature. This program is eligible to Stanford students who want to work in the labs of Bio-X affiliated faculty.

To date, with 65 new awardees from 154 applications this year, 306 students have been awarded the opportunity to participate in the Bio-X Undergraduate Summer Research Program.

Participating undergraduates are also required to present poster presentations on the research that they've conducted during the program. Please click here for title lists of past posters that our undergraduates have presented.

Many fruitful collaborations and relationships have been established with industry through fellowships. Please contact Dr. Hanwei Li or Dr. Heideh Fattaey if you'd like to learn more about how to get involved with these fellowship programs.


News

Scientists tie social behavior to activity in specific brain circuit
Bio-X Affiliated Faculty Karl Deisseroth
Former Bio-X Fellow Lisa Gunaydin

A team of Stanford University investigators has linked a particular brain circuit to mammals’ tendency to interact socially. Stimulating this circuit — one among millions in the brain — instantly increases a mouse’s appetite for getting to know a strange mouse, while inhibiting it shuts down its drive to socialize with the stranger. The new findings, published June 19 in Cell, may throw light on psychiatric disorders marked by impaired social interaction such as autism, social anxiety, schizophrenia and depression, said the study’s senior author, Karl Deisseroth, MD, PhD, a professor of bioengineering and of psychiatry and behavioral sciences. The findings are also significant in that they highlight not merely the role of one or another brain chemical, as pharmacological studies tend to do, but rather the specific components of brain circuits involved in a complex behavior. A combination of cutting-edge techniques developed in Deisseroth’s laboratory permitted unprecedented analysis of how brain activity controls behavior. Deisseroth, the D.H. Chen Professor and a member of the interdisciplinary Stanford Bio-X institute, is a practicing psychiatrist who sees patients with severe social deficits. “People with autism, for example, often have an outright aversion to social interaction,” he said. They can find socializing — even mere eye contact — painful. Deisseroth pioneered a brain-exploration technique, optogenetics, that involves selectively introducing light-receptor molecules to the surfaces of particular nerve cells in a living animal’s brain and then carefully positioning, near the circuit in question, the tip of a lengthy, ultra-thin optical fiber (connected to a laser diode at the other end) so that the photosensitive cells and the circuits they compose can be remotely stimulated or inhibited at the turn of a light switch while the animal remains free to move around in its cage.


Method for observing kinase function in cells could speed drug discovery
Bio-X Affiliated Faculty Markus Covert

Think of the human body as an intricate machine whose working parts are proteins: molecules that change shape to enable our organs and tissues to perform tasks such as breathing or eating or thinking. Of the millions of protein types, 500 in the kinase family are particularly important to drug discovery. Kinases are messengers: They deliver signals that regulate and orchestrate the actions of other proteins. Proper kinase activity maintains health. Irregular activity is linked to cancer and other diseases. For this reason, many drugs seek either to boost or suppress kinase activity. Now Stanford bioengineers have invented a way to observe and report on the behavior of these signaling proteins as they go about their crucial work inside living cells. “We’ve been able to observe multiple kinases functioning in living cells, which is something no one else has ever seen,” said Markus Covert, PhD, an assistant professor of bioengineering and senior author of a paper, published online June 19th in Cell, that describes the findings. "Cancers can occur when a kinase inappropriately tells a cell to 'grow, grow, grow'" Covert said. "The revers can also be true, if a cell reaches what should be the end of its normal life span but the kinase never says 'die, die, die.'" Using the new technique, researchers could observe and compare kinase activity in healthy versus diseased cells, then introduce an experimental drug to see how it affects the living cells.


Adult kidneys constantly grow, remodel themselves, study finds
Bio-X Affiliated Faculty Irv Weissman

Researchers at the Stanford Institute for Stem Cell Biology and Regenerative Medicine and the Sackler School of Medicine in Israel have shown how the kidneys constantly grow and have surprising ability to regenerate themselves, overturning decades of accepted wisdom that such regeneration didn’t happen. It also opens a path toward new ways of repairing and even growing kidneys. “These are basic findings that have direct implications for kidney disease and kidney regeneration,” says Yuval Rinkevich, PhD, the lead author of the paper and a postdoctoral scholar at the institute. The findings were published online May 15 in Cell Reports. It has long been thought that kidney cells didn’t reproduce much once the organ was fully formed. The new research shows that the kidneys are regenerating and repairing themselves throughout life. “This research tells us that the kidney is in no way a static organ,” said Benjamin Dekel, MD, PhD, a senior author of the paper and associate professor of pediatrics at Sackler, as well as head of the Pediatric Stem Cell Research Institute at the Sheba Medical Center in Israel. “The kidney, incredibly, rejuvenates itself and continues to generate specialized kidney cells all the time.” Irving Weissman, MD, professor of pathology and of developmental biology and director of the Stanford institute, is the other senior author.


New Stanford blood test identifies heart-transplant rejection earlier than biopsy can
Bio-X Affiliated Faculty Stephen Quake and Medicine Faculty Kiran Khush

Stanford University researchers have devised a noninvasive way to detect heart-transplant rejection weeks or months earlier than previously possible. The test, which relies on the detection of increasing amounts of the donor’s DNA in the blood of the recipient, does not require the removal of any heart tissue. “This test appears to be safer, cheaper and more accurate than a heart biopsy, which is the current gold standard to detect and monitor heart-transplant rejection,” said Stephen Quake, PhD, professor of bioengineering and of applied physics. “We believe it’s likely to be very useful in the clinic.” Quake, the Lee Otterson Professor in the School of Engineering and a Howard Hughes Medical Institute investigator, is a senior author of the study, published June 18 in Science Translational Medicine. Kiran Khush, MD, assistant professor of medicine, is the other senior author. Postdoctoral scholar Iwijn De Vlaminck, PhD, is the lead author. The test, called a cell-free DNA test, is different from another blood test, AlloMap, used to detect rejection. The commercially available AlloMap uses a blood sample to analyze the expression of immune-system genes involved in rejection. The researchers found that the cell-free DNA test outperformed AlloMap by a substantial margin.


Blocking brain’s ‘internal marijuana’ may trigger early Alzheimer’s deficits, study shows
Bio-X Affiliated Faculty Daniel Madison

A new study led by investigators at the Stanford University School of Medicine has implicated the blocking of endocannabinoids — signaling substances that are the brain’s internal versions of the psychoactive chemicals in marijuana and hashish — in the early pathology of Alzheimer’s disease. A substance called A-beta — strongly suspected to play a key role in Alzheimer’s because it’s the chief constituent of the hallmark clumps dotting the brains of people with Alzheimer’s — may, in the disease’s earliest stages, impair learning and memory by blocking the natural, beneficial action of endocannabinoids in the brain, the study demonstrates. The Stanford group is now trying to figure out the molecular details of how and where this interference occurs. Pinning down those details could pave the path to new drugs to stave off the defects in learning ability and memory that characterize Alzheimer’s. In the study, published June 18 in Neuron, researchers analyzed A-beta’s effects on a brain structure known as the hippocampus. In all mammals, this midbrain structure serves as a combination GPS system and memory-filing assistant, along with other duties. “The hippocampus tells us where we are in space at any given time,” said Daniel Madison, PhD, associate professor of molecular and cellular physiology and the study’s senior author. “It also processes new experiences so that our memories of them can be stored in other parts of the brain. It’s the filing secretary, not the filing cabinet.”


Stanford bioengineers improve upon football mouthguard that senses head impacts
Bio-X Affiliated Faculty (and former Bio-X Fellow) David Camarillo
Bio-X Fellow Lyndia Wu

The debilitating effects of repeated concussions on NFL players have been well documented. What scientists still don't clearly know is whether those injuries are the result of thousands of tiny impacts, or singular, crushing blows to the brain. A group of bioengineers at Stanford is working to understand the head trauma that footballers experience during a game, and is making steps toward developing technology that reports dangerous hits in real time. For the past few years, David Camarillo, an assistant professor of bioengineering, and his colleagues have been supplying Stanford football players with special mouthguards equipped with accelerometers that measure the impacts players sustain during a practice or game. Previous studies have suggested a correlation between the severity of brain injuries and the biomechanics associated with skull movement from an impact. Camarillo's group uses a sensor-laden mouthguard because it can directly measure skull accelerations – by attaching to the top row of teeth – which is difficult to achieve with sensors attached to the skin or other tissues. So far, the researchers have recorded thousands of these impacts, and have found that players' heads frequently sustain accelerations of 10 g forces, and, in rarer instances, as much as 100 g forces. By comparison, space shuttle astronauts experience a maximum of 3 g forces on launch and reentry.


Events

Neurology & Neurosciences
July 18, 2014, 8 am - 9 am
LKSC Rm LK 130, Stanford, CA
"Sleep Disorders and Neurologic Disease"
Speaker: Mitchell Miglis, MD
Anesthesia
August 11, 2014, 6:45 am - 8:00 am
LKSC Rm LK 130, Stanford, CA
"Issues in Anesthesia Related Health Policy Research: Evidence of Value & Value of Evidence"
Speaker: Thomas Miller, PhD, MBA, Director of Health Policy Research, ASA

Resources

Stanford University
Stanford Bio-X
Bio-X Seed Grants
The Stanford Bio-X Interdisciplinary Initiatives Program (IIP) provides seed funding for high-risk, high-reward, collaborative projects across the university, and have been highly successful in fostering transformative research.
Office of Technology and Licensing "Techfinder"
Search the OTL Technology Portal to find technologies available for licensing from Stanford.
Stanford Center for Professional Development
- Take advantage of your FREE membership!
- Take online graduate courses in engineering, leadership and management, bioscience, and more.
- Register for free webinars and seminars, and gets discounts on courses.
Stanford Biodesign Video Tutorials on how FDA approves medical devices
A series of video briefs recently produced by the Stanford Biodesign Program teaches innovators how to get a medical device approved for use in the United States. This free, online library of 60 videos provides detailed information on the Food and Drug Administration regulatory process, short case studies and advice on interacting with the FDA.

To learn more about Stanford Bio-X or Stanford University, please contact Dr. Hanwei Li, the Bio-X Corporate Forum Liaison, at 650-725-1523 or lhanwei1@stanford.edu, or Dr. Heideh Fattaey, the Executive Director of Bio-X Operations and Programs, at 650-799-1608 or hfattaey@stanford.edu.

Release Date: 
June 30, 2014