Welcome to the biweekly electronic newsletter from Stanford Bio-X for members of the Bio-X Corporate Forum. Please contact us if you would like to be added or removed from this distribution list, or if you have any questions about Stanford Bio-X or Stanford University.
Seed Grant Program
SEED GRANTS FOR SUCCESS - Stanford Bio-X Interdisciplinary Initiatives Program (IIP)
The Bio-X Interdisciplinary Initiatives Program represents a key Stanford Initiative to address challenges in human health. The IIP awards approximately $3 million every other year in the form of two-year grants averaging about $150,000 each. From its inception in 2000 through the fifth round in 2010, the program has provided critical early-stage funding to 114 different interdisciplinary projects, involving collaborations from over 300 faculty members, and creating over 450 teams from five different Stanford schools. From just the first 4 rounds, the IIP awards have resulted in a 10-fold-plus return on investment, as well as hundreds of publications, dozens of patents filed, and most importantly, the acceleration of scientific discovery and innovation.
In 2012, Stanford Bio-X selected 23 new seed grant projects as the winners of the 6th round. Please go here to view the list of awardees, along with the titles of their projects and the abstracts of the research. Competition was intense as the awardees were chosen from 118 Letters of Intent (LOIs). Selection criteria included innovation, high-reward, and interdisciplinary collaboration. (To view the 114 other IIP projects that have been funded from the first 5 rounds, please click here.) In addition, SANOFI has also funded 4 new Bio-X IIP Seed Grant projects from round 6!
** On February 25, 2013, Stanford Bio-X held its latest annual IIP Seed Grant Symposium at the Clark Center. It was attended by over 150 people, and the symposium included 8 podium presentations and 116 poster presentations. The podium talks represented research from a wide array of fields (such as gene delivery to interactive gaming in biology to tele-robotic systems to stem cells to hedgehog signal transductions and more), with each project exemplifying the Stanford Bio-X mission of crossing boundaries to bring about interdisciplinary research and solutions in the field of life bioscience. The talks for this symposium are posted here. To view previously recorded talks, please go here.
We are cultivating and are highly successful in building meaningful collaborations with numerous corporate colleagues. New collaborations through our seed grant projects are highly encouraged. To learn about how to get involved, please contact Dr. Hanwei Li or Dr. Heideh Fattaey.
Fellowships
Every year, graduate students and postdoctoral scholars of Bio-X affiliated faculty are highly encouraged to apply for the Bio-X Fellowships, which are awarded to research projects that are interdisciplinary and utilize the technologies of different fields to solve different biological questions. Students are encouraged to work collaboratively with professors of different departments, thus creating cross-disciplinary relationships among the different Stanford schools. Our fellows have conducted exciting research, resulting in publications in high-impact journals and have been offered excellent positions in industry and academia.
To date, Stanford Bio-X has a total of 126 Bio-X Fellows, including the 18 newest Fellowship awardees announced at last year's BIO-X FELLOWS SYMPOSIUM. Currently, Bio-X is in the process of reviewing its 10th year of applications and we look forward to continuing the support of our students' graduate training in interdisciplinary biosciences.
To view the numerous projects that have been awarded over the years, please click here.
BIO-X UNDERGRADUATE SUMMER RESEARCH PROGRAM
The Bio-X Undergraduate Summer Research Program supports undergraduate research training through an award designed to support interdisciplinary undergraduate summer research projects. The program is an invaluable opportunity for students to conduct hands-on research, learn how to carry out experiments in the laboratory, and develop the skills to read and analyze scientific literature.
To date, 176 students have been awarded the opportunity to participate in the Bio-X Undergraduate Summer Research Program. Currently, Stanford Bio-X is in its 8th call for applications. This is eligible to Stanford students who wants to work in the labs of Bio-X affiliate faculty.
Participating undergraduates are also required to present poster presentations on the research that they've conducted during the program. Please click here for title lists of past posters that our undergraduates have presented.
Many fruitful collaborations and relationships have been established with industry through fellowships. Please contact Dr. Hanwei Li or Dr. Heideh Fattaey if you'd like to learn more about how to get involved with these fellowship programs.
News
Scientists pinpoint brain’s area for numeral recognition
Bio-X Affiliated Faculty Josef Parvizi, Bio-X NeuroVentures funded research
Scientists at the Stanford University School of Medicine have determined the precise anatomical coordinates of a brain “hot spot,” measuring only about one-fifth of an inch across, that is preferentially activated when people view the ordinary numerals we learn early on in elementary school, like “6” or “38.” Activity in this spot relative to neighboring sites drops off substantially when people are presented with numbers that are spelled out (“one” instead of “1”), homophones (“won” instead of “1”) or “false fonts,” in which a numeral or letter has been altered. “This is the first-ever study to show the existence of a cluster of nerve cells in the human brain that specializes in processing numerals,” said Josef Parvizi, MD, PhD, associate professor of neurology and neurological sciences and director of Stanford’s Human Intracranial Cognitive Electrophysiology Program. “In this small nerve-cell population, we saw a much bigger response to numerals than to very similar-looking, similar-sounding and similar-meaning symbols." “It’s a dramatic demonstration of our brain circuitry’s capacity to change in response to education,” he added. “No one is born with the innate ability to recognize numerals.” The finding pries open the door to further discoveries delineating the flow of math-focused information processing in the brain. It also could have direct clinical ramifications for patients with dyslexia for numbers and with dyscalculia: the inability to process numerical information.
Firefly protein lights up degenerating muscles, aiding muscular-dystrophy research, scientists show
Bio-X Affiliated Faculty Tom Rando
Stanford University School of Medicine scientists have created a mouse model of muscular dystrophy in which degenerating muscle tissue gives off visible light. The observed luminescence occurs only in damaged muscle tissue and in direct proportion to cumulative damage sustained in that tissue, permitting precise monitoring of the disease’s progress in the mice, the researchers say. While this technique cannot be used in humans, it paves the way to quicker, cheaper and more accurate assessment of the efficacy of therapeutic drugs. The new mouse strain is already being employed to test stem cell and gene therapy approaches for muscular dystrophies, as well as drug candidates now in clinical trials, said Thomas Rando, MD, PhD, professor of neurology and neurological sciences and director of Stanford’s Glenn Laboratories for the Biology of Aging.
Blocking 'scaffold' protein inhibits cancer growth, study finds
Bio-X Affiliated Faculty Paul Khavari
Researchers at the Stanford University School of Medicine have devised an entirely novel way to block biological signaling pathways that, when overactive, lead to many types of cancers. They've done so by disrupting the function of a mediator, or scaffold, protein that brings together key members of the pathway and promotes their interaction to stimulate cell growth and division. Blocking the function of the scaffold protein, or even removing it entirely, impeded the development of chemically induced skin cancers in laboratory mice and extended the life span of mice with established pancreatic tumors, the researchers say. It also significantly slowed the growth in laboratory culture of human melanoma cells that had become resistant to a new, targeted cancer treatment called vemurafenib (marketed as Zelboraf). The versatility of the technique, as well as its apparent ability to tackle drug-resistant cancers, indicates that targeting scaffold proteins may lead to a new class of cancer therapies in humans. "This could be a new type of tool for clinicians," said Paul Khavari, MD, PhD, the Carl J. Herzog Professor and chair of the Department of Dermatology. "It's as if the cancer-causing proteins are convening around a conference table to implement tumor-forming discussions. This new approach takes away the table so those cancer-promoting actions never happen. By doing so, this blocks growth of even cancer cells that have already become resistant to other targeted treatments."
Discovery alters understanding of long-distance intercellular communication
Developmental Biology and Genetics Faculty Maria Barna
In a finding likely to fundamentally reshape biologists' understanding of how vertebrate cells communicate, researchers at the Stanford University School of Medicine and the UC-San Francisco have discovered a new type of cellular structure that directly delivers and receives payloads of signaling molecules between distant neighbors in a developing embryo. The seeming specificity of the interaction contrasts starkly with the commonly held notion that signaling molecules are released from one cell and float, or diffuse, through the intercellular space to their targets. While this finding does not preclude the use of diffusion as a signaling method, it identifies another new, surprising avenue of long-distance cellular communication. The research was published online April 28 in Nature. "The presence of these structures, which we call cytoplasmic extensions or a type of specialized filopodia, was really unexpected," said Maria Barna, PhD, an assistant professor of developmental biology and of genetics at Stanford. She and her colleagues used high-resolution, real-time imaging techniques to see the previously invisible extensions that form finger-like projections. These projections are destroyed by conventional techniques that are used to preserve tissues.
New battery design could help solar and wind energy power the grid
Bio-X Affiliated Faculty Yi Cui
Researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life battery that could enable solar and wind energy to become major suppliers to the electrical grid. "For solar and wind power to be used in a significant way, we need a battery made of economical materials that are easy to scale and still efficient," said Yi Cui, a Stanford associate professor of materials science and engineering and a member of the Stanford Institute for Materials and Energy Sciences, a SLAC/Stanford joint institute. "We believe our new battery may be the best yet designed to regulate the natural fluctuations of these alternative energies." Cui and colleagues report their research results, some of the earliest supported by the DOE's new Joint Center for Energy Storage Research battery hub, in the May issue of Energy & Environmental Science.
Events
Biochemistry May 1, 2013, 4 pm - 5 pm Clark Center Auditorium, Stanford, CA FRONTIERS IN BIOLOGY - "Context and conflict in microbial communities" Speaker: Devaki Bhaya, Carnegie Institute |
Neurosciences Institute May 2, 2013, 4:30 pm - 5:30 pm Clark Center Auditorium, Stanford, CA "An Activity-dependent Transcription Pathway for Contextual Memory Formation" Speaker: Yingxi Lin, McGovern Institute for Brain Research, MIT |
Cancer Biology May 7, 2013, 12 pm - 1 pm Munzer Auditorium, Beckman Center, Stanford, CA "microRNAs at the crossroads between cancer and stem cell biology" Speaker: Lin He, Ph.D., Department of Molecular and Cell Biology, UC Berkeley |
Bio-X May 9, 2013, 3:15 pm - 4:15 pm Clark Center Auditorium, Stanford, CA "Big data and new models needed to study DNA variation in evolution and cancer" Speaker: David Haussler, UCSC, HHMI Investigator |
Resources
Stanford University |
Stanford Bio-X |
Bio-X Seed Grants The Stanford Bio-X Interdisciplinary Initiatives Program (IIP) provides seed funding for high-risk, high-reward, collaborative projects across the university, and have been highly successful in fostering transformative research. |
Office of Technology and Licensing "Techfinder" Search the OTL Technology Portal to find technologies available for licensing from Stanford. |
Stanford Center for Professional Development - Take advantage of your FREE membership! - Take online graduate courses in engineering, leadership and management, bioscience, and more. - Register for free webinars and seminars, and gets discounts on courses. |
Stanford Biodesign Video Tutorials on how FDA approves medical devices A series of video briefs recently produced by the Stanford Biodesign Program teaches innovators how to get a medical device approved for use in the United States. This free, online library of 60 videos provides detailed information on the Food and Drug Administration regulatory process, short case studies and advice on interacting with the FDA. |
To learn more about Stanford Bio-X or Stanford University, please contact Dr. Hanwei Li, the Bio-X Corporate Forum Liaison, at 650-725-1523 or lhanwei1@stanford.edu, or Dr. Heideh Fattaey, the Executive Director of Bio-X Operations and Programs, at 650-799-1608 or hfattaey@stanford.edu.