The consistent focus of Dr. Anna Gloyn's research has been using naturally occurring mutations in humans as tools to identity critical regulatory pathways and insights into normal physiology. Her early post-doctoral research led to the identification a new genetic aetiology for permanent and transient neonatal diabetes due to KCNJ11 mutations and resulted in one of the first examples of precision medicine, where the determination of the molecular genetic aetiology lead to improved treatment options for patients. Whilst she was in Oxford, Dr. Gloyn's team discovered a novel genetic cause of constitutive insulin sensitivity in humans due to mutations in the PTEN gene highlighting the complex interplay between pathways involved in cell-growth and metabolism.
Dr. Gloyn's current research projects are focused on the translation of genetic association signals for type 2 diabetes and glycaemic traits into cellular and molecular mechanisms for beta-cell dysfunction and diabetes. Her group uses a variety of complementary approaches, including human genetics, functional genomics, physiology and islet-biology to dissect out the molecular mechanisms driving disease pathogenesis.
Anna is an active member of multiple internal genetic discovery efforts including: NIH/Pharma funded Accelerated Medicines Partnership, DIAGRAM (Diabetes Genetics Replication and Meta-analysis), MAGIC (Meta-analysis of Glucose and Insulin traits Consortium), Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) and the Genetics of Type 2 Diabetes (GoT2D). She was also involved in the IMI funded STEMBANCC project which focused on delivering human IPS cell derived beta-cell models for drug discovery efforts.
Anna is also involved in several initiatives under the Human Islet Research Network (HIRN): the NIDDK funded Human Pancreas Atlas Programme (HPAP) for Type 2 Diabetes, and the Integrated Islet Phenotyping Programme (IIPP).