Dr. Fuller's laboratory studies the processing of complex liquids (polymers, suspensions, emulsions, biological fluids) and how it alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in their laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).
Another application of orientation dynamics is in the development of solar cells. The efficiency of second-generation solar cells fabricated with conjugated polymers is limited by photoelectron transport within the polymer film. Inspired by electrorheological fluids, an external electric field is applied to the film to induce anisotropy in polymer crystallites, which is expected to enhance electron mobility.
The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, they are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.