Dr. Graves's research group is focused on applications of emerging functional and molecular imaging techniques in radiation therapy of cancer. In order to integrate these novel imaging procedures with state-of-the-art radiation therapy, a number of issues must be addressed. First, what are the molecular targets that hold the most promise for targeting and monitoring response to radiation therapy, and how can they best be visualized in vivo? Second, what are the limitations of novel imaging techniques that may bear on their application in radiation oncology? Third, how can one display, analyze, and segment multiple three-dimensional datasets to generate target volumes for radiotherapy? And finally, how will the information contained in imaging results of different modalities be integrated into the selection of a treatment course for a patient and subsequently, where appropriate, the specification of an optimized radiation target? These questions comprise Dr. Graves's research. Projects that address these topics include the implementation and evaluation of clinical PET/CT imaging for radiation treatment planning, development and validation of novel molecular imaging methods for preclinical and clinical imaging of tumor radiosensitivity and radiation response, development of software for multimodal image analysis, and study of tumor hypoxia and radioresistance in small animal models using a multimodality molecular imaging approach.
Bio-X Affiliated Faculty